9 research outputs found

    Gray Whale (Eschrictius robustus) Call Types Recorded During Migration off the West Coast of Vancouver Island

    Get PDF
    Gray whale (Eschrichtius robustus) vocalizing behavior varies over its range, both in call type and frequency. This study adds to the growing body of passive acoustic research outside of the calving/breeding lagoons, and moves toward a description of calling behaviors throughout the whales' range. Data are presented here from acoustic surveys for two northward and one southward migration, with recordings taken off the west coast of Vancouver Island. We found gray whales to be highly sonorous, with extensive calling during the study periods of February to May for northward migrations and September to the end of January for southward travel. Low frequency moans were the most prevalent call type, with others, including knocks, up- and down sweeps, and rumbles, recorded in varying numbers. We hypothesize that calling is an aid for navigation and orientation of the herd along the migration route, in addition to holding more social functions usually assigned to baleen whale calling

    Beluga Vocalizations Decrease in Response to Vessel Traffic in the Mackenzie River Estuary

    Get PDF
    Vessel traffic negatively affects marine mammals by causing behavioural disturbance, acoustic masking, contamination (i.e., oil spills), and ship strikes. Few studies have examined the effects of vessels on marine mammals in the Arctic, but beluga whales appear to be especially sensitive to vessel traffic. We examine how the vocalizations of belugas are impacted by vessel traffic in the Tarium Niryutait Marine Protected Area in the Mackenzie River estuary of the western Canadian Arctic. Between one and four acoustic recorders were deployed between June and August each year between 2015 and 2018 near the only shipping channel at this site. We examined beluga vocalizations from acoustic recordings over four summers and assessed how the distance to the nearest vessel passing the acoustic recorder affected the number of vocalizations. Beluga vocalizations within the range of the acoustic recorder decreased significantly when vessels were within 5 km of the acoustic recorder. This result suggests either that belugas are avoiding the vessel or that they reduce their vocalization in response to vessel traffic. Future work is needed to assess exactly how belugas are reacting to vessel traffic in this area and what the long-term consequences of these reactions are. Management measures for reducing these impacts must be carefully considered, especially since these vessels are very restricted in where they can travel, and many of the vessels are necessary for the livelihoods of local communities.La circulation maritime a des effets négatifs sur les mammifères marins, car elle entraîne des perturbations comportementales, masque leurs signaux acoustiques et engendre de la contamination (comme des déversements de pétrole) et des collisions. Bien que peu d’études aient examiné les effets des bateaux sur les mammifères marins de l’Arctique, les bélugas semblent particulièrement sensibles à la circulation maritime. Dans cet article, nous examinons en quoi les vocalisations des bélugas sont touchées par la circulation maritime dans la zone de protection marine de Tarium Niryutait faisant partie de l’estuaire du fleuve Mackenzie, dans l’ouest de l’Arctique canadien. Entre un et quatre enregistreurs acoustiques ont été déployés de juin à août de chaque année entre 2015 et 2018, à proximité du seul chenal de navigation de l’endroit. Nous avons examiné les vocalisations des bélugas prélevées à l’aide des enregistreurs acoustiques au cours de quatre étés, et évalué en quoi la distance du bateau passant le plus près de l’enregistreur acoustique avait un effet sur le nombre de vocalisations. Les vocalisations des bélugas dans la zone de l’enregistreur acoustique diminuaient considérablement lorsque les bateaux se trouvaient à moins de cinq kilomètres de l’enregistreur. Ce résultat suggère soit que les bélugas évitent les bateaux, soit qu’ils réduisent leurs vocalisations en réponse à la circulation maritime. Il y a lieu de pousser cette étude plus loin pour évaluer exactement comment les bélugas réagissent à la circulation des bateaux dans cette région, et quelles sont les conséquences à long terme de ces réactions. Il y a lieu aussi de considérer avec soin des mesures de gestion pour réduire ces incidences, surtout parce que les déplacements de ces bateaux sont assujettis à de nombreuses restrictions et parce que grand nombre des bateaux qui passent par là sont nécessaires à la subsistance des collectivités de la région. &nbsp

    Using passive acoustics to monitor Galiano glass sponge reef

    Get PDF
    Structured biogenic habitats are biodiversity hotspots that host a wide range of soniferous species. Glass Sponge Reefs (GSRs) are rare and sensitive systems that have only been documented in shelf habitats in the Northeast Pacific from Portland Canal to the Strait of Georgia, British Columbia, Canada. Galiano Reef is a GSR located in the Salish Sea, in the Outer Gulf Islands Sponge Reef fishing closure, British Columbia, Canada. Little is known about the soundscapes of these deep-water systems and the potential impacts of anthropogenic noise on them. Here we describe the biophony and the anthropophony on and outside of Galiano reef. In September of 2016 we deployed three underwater acoustic recorders that captured sound continuously for approximately four days. The two recordings from the reef (within and at the margin of the reef footprint) were significantly louder in the mid- and high-frequency bands (100-1000 Hz and 1-10 kHz respectively) than the recordings made in soft-bottom habitat away from the reef. These frequency bands are known to correlate with aspects of the biological community as well as benthic cover in shallow-water systems; visual surveys conducted in the area confirmed the presence of several known soniferous species. More fish sounds were recorded on the reef compared to the off-reef site. There was a significant difference in the influence of vessel traffic on Sound Pressure Levels at the three locations across all frequency bands, with the greatest influence in the low frequency band at the reef-margin location. Our results suggest that GSRs have a distinct soundscape, which warrants the use of passive acoustics as a tool to monitor the ecosystem

    Possible fish sounds recorded in the Salish Sea

    No full text
    Several species of fish around the world have been reported to be soniferous. The types of sounds fish produce vary among species and regions but consist typically of low frequency (\u3c 1kHz) pulses and amplitude modulated grunts or croaks. The characterization, identification, and purpose of fish sounds is still largely unknown. Among the ~400 known marine fish species frequenting the waters of British Columbia, only 22 have been reported to be soniferous (Wall et al., 2014). Many more species are suspected to produce sound, but have not been reported yet. In 2014, two bottom mounted passive acoustic recorders were deployed to characterize the underwater soundscape in the Salish Sea. One was deployed off Hornby Island and was recording continuously at 48 kHz from June to September. The other recorder, located at the mouth of the Fraser Delta, was part of the VENUS cabled observatory and was recording continuously at 64 kHz from March to December. In both of these deployments, many low frequency sounds with acoustic properties similar to the fish sounds reported in various regions of the world were recorded. In order to investigate the provenance of these sounds, a detector based on image processing and machine learning techniques was developed to find these sounds automatically in recordings and allowed to describe their temporal occurrence at both locations. A clustering analysis was also performed to identify the different sound types detected. A comparison of the sound types between the two monitoring locations will be presented. This presentation will discuss what further steps are required to confirm that these sounds are indeed from fish and to link the different sound types identified to specific species

    Détection et identification automatique en temps-réel des vocalises de rorqual bleu (Balaenoptera musculus) et de rorqual commun (Balaenoptera physalus) dans l'estuaire du Saint-Laurent

    Get PDF
    La détection et l'identification automatique des vocalises d' animau.'( est un out il ut ile pour documenter leur distribution saisonni ère, leur abondance relative ainsi que leur comportement dans leur habitat naturel. La performance des méthodes de traitement du signal ut ilisées est cependant dépendante du type de vocalisations (bande de fréquence, variabilité du patron temps-fréquence) et des caractéristiques environnementales (bruit , effets de propagation sonore). Ce proj et de recherche compare plusieurs méthodes de détect ion et d 'identification dans le domaine t emps-fréquence, des vocalises de rorquals bleus (Balaenoptera musculus) et de rorquals communs (Balaenoptera physalus) dans le Saint- Laurent. Trois des vocalises de ces balaenoptéridés sont des patrons réguliers d 'infrasons « 30 Hz) stéréotypés et une autre est de fréquence plus élevée (30- 110 Hz), irrégulière et variable à la fois en fréquence et en durée (1-5 s). À cause du trafic marit ime important , des caractéristiques bathymétriques et physiques de la Voie maritime du Saint-Laurent, la majorité des vocalises sont polluées par du bruit intense dans les basses fréquences et étirées en temps par les trajets multiples. Toutes les méthodes commencent par le calcul du spectrogramme puis d 'une étape de réduction du bruit basée sur des techniques de traitement d 'image. Ensuite la première approche consiste à binariser le spectrogramme et à calculer la coïncidence avec Ull modèle temps-fréquence binarisé, via une opération logique AND. La seconde approche consiste à sélectionner les maxima locaux à chaque pas de temps du spectrogramme et à extraire les contours temps-fréquence des vocalises en utilisant un algorit hme de suivi . Ensuite deux méthodes de reconnaissance sont testées pour classifier ces contours, la déformation temporelle dynamique (DTW) et la quantifi- cation vectorielle (VQ). Les taux de faux négatifs et de faux posit ifs sont évalués sur une série de plus de 2000 vocalises extraites d'enregistrements continus collectés dans l'aire d'étude. La méthode de coïncidence des spectrogrammes se trouve être plus performante pour les vocalises stéréotypées (vocalises A, B et 20 Hz), tandis que l'approche par extract ion de contours s'avère être plus performante pour la vocalise variable. L'interprétation des indices de performance selon le contexte rythmique des vocalises montre que toutes ces méthodes sont utilisables pour un suivi d 'animaux (Monitoring) . Finalement, l'approche par extraction de contours montre un potentiel intéressant pour la détection et l'identification de vocalises de mammifères marins et est adaptable à différents types de vocalises

    Seasonal patterns in acoustic detections of marine mammals near Sachs Harbour, Northwest Territories

    No full text
    The Arctic is changing rapidly, leading to changes in habitat availability and increased anthropogenic disturbance. Information on the distribution of animals is needed as these changes occur. We examine seasonal presence of marine mammals in the western Canadian Arctic near Sachs Harbour, Northwest Territories, using passive acoustic monitoring between 2015 and 2016. We also examined the influence of environmental variables (ice concentration and distance, wind speed) on presence of these species. Both bowhead and beluga whales arrived in late April, and belugas departed in mid-August, while bowheads departed in late-October. Bearded seals vocalizations began in October, peaked from April through June, and stopped in early July. Ringed seals vocalized occasionally in all months, but were generally quiet. Whales migrated in as the ice broke up, and migrated out before ice formed in the autumn. Bearded seals started vocalizing as ice formed, and stopped once ice was almost gone. Given the importance of sea ice to the timing of migration of whales and vocalization by bearded seals, the trends that we present here may change in the future due to the increasing ice-free season caused by climate change. Our study therefore serves as a baseline with which to monitor future change.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    The Underwater Soundscape of Minto Inlet, Northwest Territories, Canada

    No full text
    Passive acoustic monitoring is a powerful tool for observing soniferous species in remote marine environments over long periods of time, which can inform conservation planning and wildlife management. In this study, we collected seven months of passive acoustic data from early February to early September 2019 in Minto Inlet, Northwest Territories, Canada, to examine the seasonal presence of four species of marine mammals and unidentified fish species, examine drivers of underwater sound levels, and quantify underwater noise from vessel traffic. Bearded seals were vocally present from mid-March to early July. Ringed seals were present in every month. Beluga whales were present from early July until September. Bowhead whales were detected from April to August, and fish were detected from February to July. Underwater sound levels were dampened by the presence of landfast sea ice and increased with wind speed. Increased bearded seal calls also caused increased sound levels. The only vessel detected was the research vessel that recovered the acoustic recorder. Underwater sound levels were much lower in Minto Inlet compared to other areas in the region, and it appears to be an important site for many marine mammals where forage fish species, primarily Arctic cod, are abundant at depth. These results are in line with Minto Inlet being identified as an important area by the community of Ulukhaktok. At present, anthropogenic impact on this area appears to be very low, but further monitoring is required to determine if any management measures are necessary to maintain these low levels.La surveillance acoustique passive est un outil puissant pour observer les espèces sonifères des milieux marins éloignés sur de longues périodes, ce qui permet d’éclairer la gestion de la faune et la planification de la conservation. Dans le cadre de cette étude, nous avons recueilli des données acoustiques passives échelonnées sur sept mois, du début de février au début de septembre 2019 à l’inlet Minto, dans les Territoires du Nord-Ouest, au Canada, dans le but d’examiner la présence saisonnière de quatre espèces de mammifères marins et d’espèces de poissons non identifiées, de nous pencher sur les facteurs à la base des niveaux sonores sous-marins et de quantifier le bruit sous-marin émanant de la circulation des navires. Le son des phoques barbus s’est fait entendre de la mi-mars au début de juillet. Les phoques annelés étaient présents pendant chacun des mois. Les bélugas étaient présents du début de juillet jusqu’en septembre. Des baleines boréales ont été détectées d’avril à août, et des poissons ont été décelés de février à juillet. Les niveaux sonores sous-marins ont été étouffés par la présence de glace de rive rapide et se sont accrus avec la vitesse du vent. L’intensification des vocalises du phoque barbu a également eu pour effet d’accroître les niveaux sonores. Le seul navire détecté a été le navire de recherche qui a récupéré l’enregistreur acoustique. Les niveaux sonores sous-marins étaient nettement inférieurs dans l’inlet Minto comparativement aux autres zones de la région. Il semble qu’il s’agisse d’un lieu privilégié par de nombreux mammifères marins et où les espèces de poissons à fourrage, principalement la morue polaire, abondent en profondeur. Ces résultats concordent avec la grande importance qu’accorde la communauté d’Ulukhaktok à l’inlet Minto. En ce moment, l’incidence anthropique sur cet endroit semble très faible, mais d’autres travaux de surveillance s’imposent afin de déterminer s’il y a lieu d’adopter des mesures de gestion pour maintenir ces faibles niveaux

    Acoustic detections of Arctic marine mammals near Ulukhaktok, Northwest Territories

    No full text
    The Arctic marine environment is changing rapidly through a combination of sea ice loss and increased anthropogenic activity. Given these changes can affect marine animals in a variety of ways, understanding the spatial and temporal distributions of Arctic marine animals is imperative. We use passive acoustic monitoring to examine the presence of marine mammals near Ulukhaktok, Northwest Territories, Canada, from October 2016 to April 2017. We documented bowhead whale (Balaena mysticetus Linnaeus, 1758) and beluga whale (Delphinapterus leucas Pallas, 1776) vocalizations later into the autumn than expected, and we recorded bowhead whales in early April. We recorded ringed seal (Pusa hispida Schreber, 1775) vocalizations throughout our deployment, with higher vocal activity than in other studies, and with peak vocal activity in January. We recorded bearded seals (Erignathus barbatus Erxleben, 1777) throughout the deployment, with peak vocal activity in February. We recorded lower bearded seal vocal activity than other studies, and almost no vocal activity near the beginning of the spring breeding season. Both seal species vocalized more when ice concentration was high. These patterns in vocal activity document the presence of each species at this site over autumn and winter, and are a useful comparison for future monitoring.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    High-throughput video and acoustic imaging from seafloor cabled observatories for benthic ecosystem monitoring in coastal and deep-sea settings

    No full text
    4th Marine Imaging Workshop, 3-6 October 2022, Brest, FranceOcean Networks Canada (ONC) operates large seafloor cabled observatories in the Arctic, Atlantic and Pacific, with some of its long-term observations surpassing 16 years. We present snapshot results from long-term video time-series observations and in-situ experiments studying the benthic boundary layer in two coastal and one continental margin setting of CanadaÂżs Atlantic and Pacific Oceans. Using video imagery spanning for 7 years (2013-2020) we studied the deep-sea pink urchin Strongylocentrotus fragilis with respect to the expanding oxygen minimum zone in Barkley Canyon (420 m), NE Pacific. In a second case study, we analyzed 6 months of hourly videos from the newly installed Holyrood observatory in Conception Bay, Newfoundland, Atlantic, to investigate benthic-pelagic coupling following the onset of the 2021 spring bloom. From a series of short-term experiments, we combined video and acoustic imagery (dual-frequency identification sonars) and passive acoustics data to better understand poorly understood fish vocalizations, overall temporal changes in benthic abundance and diversity, and behavioural responses to artificial lighting. In a first experiment, in turbid waters of the Fraser River Delta (150 m), Strait of Georgia, the acoustic camera proved to be the most efficient device for measuring faunal densities, while the video was more efficient in detecting a moderately diverse assemblage of fish and invertebrates. Light avoidance behaviour was detected in a large number of species while light attraction was verified for the spotted ratfish Hydrolagus colliei. In the second and third experiments, deployed at 640 m depth adjacent to Barkley Canyon, sequential bait-introduction was employed for the study of benthic successional patterns of deep-sea scavenger communities under limiting dissolved oxygen conditions. Lastly, we present an example of machine learning using a deep learning neural network applied to the automatic detection of commercially harvested sablefish, Anoplopoma fimbria. With an 92% average precision detection algorithm, we applied results to more than 650 hours of video imagery, and discuss its applications for stock-related assessment metrics and monitoringPeer reviewe
    corecore