17 research outputs found
Decidability and Periodicity of Low Complexity Tilings
International audienceIn this paper we study colorings (or tilings) of the two-dimensional grid Z 2. A coloring is said to be valid with respect to a set P of n × m rectangular patterns if all n × m sub-patterns of the coloring are in P. A coloring c is said to be of low complexity with respect to a rectangle if there exist m, n ∈ N and a set P of n × m rectangular patterns such that c is valid with respect to P and |P | ≤ nm. Open since it was stated in 1997, Nivat's conjecture states that such a coloring is necessarily periodic. If Nivat's conjecture is true, all valid colorings with respect to P such that |P | ≤ mn must be periodic. We prove that there exists at least one periodic coloring among the valid ones. We use this result to investigate the tiling problem, also known as the domino problem, which is well known to be undecidable in its full generality. However, we show that it is decidable in the low-complexity setting. Then, we use our result to show that Nivat's conjecture holds for uniformly recurrent configurations. These results also extend to other convex shapes in place of the rectangle. After that, we prove that the nm bound is multiplicatively optimal for the decidability of the domino problem, as for all ε > 0 it is undecidable to determine if there exists a valid coloring for a given m, n ∈ N and set of rectangular patterns P of size n×m such that |P | ≤ (1 + ε)nm. We prove a slightly better bound in the case where m = n, as well as constructing aperiodic SFTs of pretty low complexity. This paper is an extended version of a paper published in STACS 2020 (Kari and Moutot 2020)
Around the Domino Problem – Combinatorial Structures and Algebraic Tools
Given a finite set of square tiles, the domino problem is the question of whether is it possible to tile the plane using these tiles. This problem is known to be undecidable in the planar case, and is strongly linked to the question of the periodicity of the tiling. In this thesis we look at this problem in two different ways: first, we look at the particular case of low complexity tilings and second we generalize it to more general structures than the plane, groups.
A tiling of the plane is said of low complexity if there are at most mn rectangles of size m × n appearing in it. Nivat conjectured in 1997 that any such tiling must be periodic, with the consequence that the domino problem would be decidable for low complexity tilings. Using algebraic tools introduced by Kari and Szabados, we prove a generalized version of Nivat’s conjecture for a particular class of tilings (a subclass of what is called of algebraic subshifts). We also manage to prove that Nivat’s conjecture holds for uniformly recurrent tilings, with the consequence that the domino problem is indeed decidable for low-complexity tilings.
The domino problem can be formulated in the more general context of Cayley graphs of groups. In this thesis, we develop new techniques allowing to relate the Cayley graph of some groups with graphs of substitutions on words. A first technique allows us to show that there exists both strongly periodic and weakly-but-not-strongly aperiodic tilings of the Baumslag-Solitar groups BS(1, n). A second technique is used to show that the domino problem is undecidable for surface groups. Which provides yet another class of groups verifying the conjecture saying that the domino problem of a group is decidable if and only if the group is virtually free
The Domino Problem is Undecidable on Surface Groups
We show that the domino problem is undecidable on orbit graphs of non-deterministic substitutions which satisfy a technical property. As an application, we prove that the domino problem is undecidable for the fundamental group of any closed orientable surface of genus at least 2
Nivat's conjecture and pattern complexity in algebraic subshifts
We study Nivat's conjecture on algebraic subshifts and prove that in some of them every low complexity configuration is periodic. This is the case in the Ledrappier subshift (the 3-dot system) and, more generally, in all two-dimensional algebraic subshifts over defined by a polynomial without line polynomial factors in more than one direction. We also find an algebraic subshift that is defined by a product of two line polynomials that has this property (the 4-dot system) and another one that does not.</p
Decidability and Periodicity of Low Complexity Tilings
In this paper we study colorings (or tilings) of the two-dimensional grid Z(2). A coloring is said to be valid with respect to a set P of n x m rectangular patterns if all n x m sub-patterns of the coloring are in P. A coloring c is said to be of low complexity with respect to a rectangle if there exist m, n is an element of N and a set P of n x m rectangular patterns such that c is valid with respect to P and vertical bar P vertical bar 0 it is undecidable to determine if there exists a valid coloring for a given m, n is an element of N and set of rectangular patterns P of size n x m such that vertical bar P vertical bar <= (1 + epsilon)nm. We prove a slightly better bound in the case where m = n, as well as constructing aperiodic SFTs of pretty low complexity. This paper is an extended version of a paper published in STACS 2020 (Kari and Moutot 2020).</p
Computational limitations of affine automata and generalized affine automata
We present new results on the computational limitations of affine automata (AfAs). First, we show that using the endmarker does not increase the computational power of AfAs. Second, we show that the computation of bounded-error rational-valued AfAs can be simulated in logarithmic space. Third, we identify some logspace unary languages that are not recognized by algebraic-valued AfAs. Fourth, we show that using arbitrary real-valued transition matrices and state vectors does not increase the computational power of AfAs in the unbounded-error model. When focusing only the rational values, we obtain the the same result also for bounded error. As a consequence, we show that the class of bounded-error affine languages remains the same when the AfAs are restricted to use rational numbers only
Autour du problème du Domino - Structures combinatoires et outils algébriques
Given a finite set of square tiles, the domino problem is the question of whether is it possible ta tile the plane using these tiles.This problem is known to be undecidable in the planar case, and is strongly linked ta the question of the periodicity of the tiling.ln this thesis we look at this problem in two different ways: we look at the particular case of low complexity tilings and we generalize it to more general structures than the plane: groups.A tiling of the plane is sa id of low complexity if there are at most mn rectangles of size m x n appearing in it. Nivat conjectured in 1997 that any such tiling must be periodic, with the consequence that the domino problem would be decidable for low complexity tilings. Using algebraic tools introduced by Kari and Szabados, we prove a generalized version of Nivat's conjecture for a particular class of tilings (a subclass of what is called of algebraic subshifts). We also manage to prove that Nivat's conjecture holds for uniformly recurrent tilings, with the consequence that the domino problem is indeed decidable for low-complexity tilings.The domino problem can be formulated in the more general context of Cayley graphs of groups. ln this thesis, we develop new techniques allowing to relate the Cayley graph of some groups with graphs of substitutions on words.A first technique allows us to show that there exists bath strongly periodic and weakly-but-not strongly a periodic tilings of the Baumslag-Solitar groups BS(l,n).A second technique is used to show that the domino problem is undecidable for surface groups. Which provides yet another class of groups verifying the conjecture saying that the domino problem of a group is decidable if and only if the group is virtually free.Étant donné un ensemble fini de tuiles carrés, le problème du domino est la question : «est-il possible de paver le plan entier en utilisant ces tuiles ?» Ce problème est connu pour être indécidable dans le cas des pavages du plan, et est très fortement lié à la question de la périodicité des pavages. Dans cette thèse nous abordons ce problème de deux point de vue différents:en regardant le cas particulier des pavages de faible complexité et en le généralisant aux structures plus généra les des groupes.Un pavage du plan est dit de faible complexité s'il y apparait moins de mn rectangles de taille m x n. Nivat conjecture en 1997 qu'un tel pavage est nécessairement périodique, avec comme conséquence que le problème du domino serait décidable pour les pavages de faible complexité. En continuant de développer des outils algébriques introduits par Kari et Szabados, nous prouvons une version généralisée de la conjecture de Nivat pour une classe de pavages particuliers (certains des sous-décalage algébrique). Nous parvenons également à montrer que la conjecture de Nivat est vraie pour tout pavage uniformément récurrent, avec comme conséquence que le problème du domino est effectivement décidable pour les pavages de faible complexité.Le problème du domino peut se formuler dans le cadre plus général des graphes de Cayley de groupes. Dans cette thèse nous développons de nouvelles techniques permettant de relier les graphes de Cayley de certains groupes à des graphes de substitutions.Une première technique nous permet de montrer qu'il existe à la fois des pavages fortement apériodiques et faiblement-non-fortement apériodiques pour les groupes de Baumslag-Solitar BS(l,n). Une seconde nous permet de montrer que le problème du domino est indécidable pour les groupes de surface, ce qui fourni une nouvelle classe de groupe vérifiant la conjecture disant que que le problème du domino d'un groupe est décidable si et seulement si le groupe est virtuellement libre
Around the Domino Problem - Combinatorial Structures and Algebraic Tools
Étant donné un ensemble fini de tuiles carrés, le problème du domino est la question : «est-il possible de paver le plan entier en utilisant ces tuiles ?» Ce problème est connu pour être indécidable dans le cas des pavages du plan, et est très fortement lié à la question de la périodicité des pavages. Dans cette thèse nous abordons ce problème de deux point de vue différents:en regardant le cas particulier des pavages de faible complexité et en le généralisant aux structures plus généra les des groupes.Un pavage du plan est dit de faible complexité s'il y apparait moins de mn rectangles de taille m x n. Nivat conjecture en 1997 qu'un tel pavage est nécessairement périodique, avec comme conséquence que le problème du domino serait décidable pour les pavages de faible complexité. En continuant de développer des outils algébriques introduits par Kari et Szabados, nous prouvons une version généralisée de la conjecture de Nivat pour une classe de pavages particuliers (certains des sous-décalage algébrique). Nous parvenons également à montrer que la conjecture de Nivat est vraie pour tout pavage uniformément récurrent, avec comme conséquence que le problème du domino est effectivement décidable pour les pavages de faible complexité.Le problème du domino peut se formuler dans le cadre plus général des graphes de Cayley de groupes. Dans cette thèse nous développons de nouvelles techniques permettant de relier les graphes de Cayley de certains groupes à des graphes de substitutions.Une première technique nous permet de montrer qu'il existe à la fois des pavages fortement apériodiques et faiblement-non-fortement apériodiques pour les groupes de Baumslag-Solitar BS(l,n). Une seconde nous permet de montrer que le problème du domino est indécidable pour les groupes de surface, ce qui fourni une nouvelle classe de groupe vérifiant la conjecture disant que que le problème du domino d'un groupe est décidable si et seulement si le groupe est virtuellement libre.Given a finite set of square tiles, the domino problem is the question of whether is it possible ta tile the plane using these tiles.This problem is known to be undecidable in the planar case, and is strongly linked ta the question of the periodicity of the tiling.ln this thesis we look at this problem in two different ways: we look at the particular case of low complexity tilings and we generalize it to more general structures than the plane: groups.A tiling of the plane is sa id of low complexity if there are at most mn rectangles of size m x n appearing in it. Nivat conjectured in 1997 that any such tiling must be periodic, with the consequence that the domino problem would be decidable for low complexity tilings. Using algebraic tools introduced by Kari and Szabados, we prove a generalized version of Nivat's conjecture for a particular class of tilings (a subclass of what is called of algebraic subshifts). We also manage to prove that Nivat's conjecture holds for uniformly recurrent tilings, with the consequence that the domino problem is indeed decidable for low-complexity tilings.The domino problem can be formulated in the more general context of Cayley graphs of groups. ln this thesis, we develop new techniques allowing to relate the Cayley graph of some groups with graphs of substitutions on words.A first technique allows us to show that there exists bath strongly periodic and weakly-but-not strongly a periodic tilings of the Baumslag-Solitar groups BS(l,n).A second technique is used to show that the domino problem is undecidable for surface groups. Which provides yet another class of groups verifying the conjecture saying that the domino problem of a group is decidable if and only if the group is virtually free
37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020)
In this paper we study low-complexity colorings (or tilings) of the two-dimensional grid Z(2). A coloring is said to be of low complexity with respect to a rectangle if there exists m, n is an element of N such that there are no more than mn different rectangular m x n patterns in it. Open since it was stated in 1997, Nivat's conjecture states that such a coloring is necessarily periodic. Suppose we are given at most nm rectangular patterns of size n x m. If Nivat's conjecture is true, one can only build periodic colorings out of these patterns - meaning that if the m x n rectangular patterns of the coloring are among these mn patterns, it must be periodic. The main contribution of this paper proves that there exists at least one periodic coloring build from these patterns. We use this result to investigate the tiling problem, also known as the domino problem, which is well known to be undecidable in its full generality. However, we show that it is decidable in the low-complexity setting. Finally, we use our result to show that Nivat's conjecture holds for uniformly recurrent configurations. The results also extend to other convex shapes in place of the rectangle
Weakly and Strongly Aperiodic Subshifts of Finite Type on Baumslag-Solitar Groups
International audienceWe study the periodicity of subshifts of finite type (SFT) on Baumslag-Solitar groups. We show that for residually finite Baumslag-Solitar groups there exist both strongly and weakly-but-not-strongly aperiodic SFTs. In particular, this shows that unlike Z 2 , but like Z 3 , strong and weak aperiodic SFTs are different classes of SFTs in residually finite BS groups. More precisely, we prove that a weakly aperiodic SFT on BS(m,n) due to Aubrun and Kari is, in fact, strongly aperiodic on BS(1,n); and weakly but not strongly aperiodic on any other BS(m,n). In addition, we exhibit an SFT which is weakly but not strongly aperiodic on BS(1,n); and we show that there exists a strongly aperiodic SFT on BS(n,n)