8 research outputs found

    Simulation and Analysis of Land Subsidence Phenomenon Using Poroelasticity Theory (Case Study: Tehran-Shahriar Plain)

    Get PDF
    Indiscriminate extraction of underground water sources causes a drop in the water level and an increase in the stress on the soil particles, which leads to the subsidence of the earth's surface. Shahryar's critical plain has been affected by the phenomenon of subsidence for the past few years. The existence of vital arteries, economic, pilgrimage and military areas has turned it into a strategic area, which doubles the cost of the harmful consequences of subsidence. In this research, a new method is used to predict and analyze subsidence, under the title of Poroelasticity module of COMSOL software, which uses the simultaneous solution of equations related to fluid movement in porous media and mechanical deformation. The output of the numerical model was validated and compared between 2003 and 2019 at 24 points with the alignment observations, the Sentinel 1 radar interferometric images. The correlation coefficient of 0.97 indicates an acceptable correlation between the data values, the good matching of the interferometric images with the maps of the subsidence zones obtained from the software data and the approach of the squared values of the mean squared error and the efficiency coefficient towards zero and one was obtained. The general result of the finite element numerical modeling showed that the average rate of subsidence during the year 2031 due to the successive compression of the upper layers of the aquifer, with a lower rate, about 13.19 cm and in the places where the thickness of the fine-grained layers increased, He finds that it will reach 18.38 cm. Also, the range of changes in the underground water level in the period of time, the type of land and the number of geological units are among the factors affecting the subsidence pattern and rate

    Estudio experimental y numérico de la estabilidad de la pendiente aguas arriba en un embalse de presas de tierra en condiciones de extracción rápida

    Get PDF
    The rapid ‎drawdown of the dam reservoir is one of the most common situations occurring in the lifetime of a dam. For this reason, one of the main factors in the design of the upstream slope is the rapid drainage of the reservoir. In this case, the upstream slope is in a critical condition and the slope may be unstable. When the water surface in the reservoir is drawdown suddenly, the water level in the dam body does not decrease at the same time as the reservoir water level. The analysis of seepage from the earth dam body and calculation of the water loss play an important role in calculating the amount of pore water pressure, and, consequently, the stability analysis of the dam body. In addition, any seepage analysis is dependent on the hydraulic properties of the dam materials. In order to investigate the effect of hydraulic conductivity on the rapid drawdown of water level and the seepage, an experimental model was constructed of an earth dam. By accurate measurement of hydraulic parameters of the materials in saturated and unsaturated media, the flow through this model was modeled using a disk penetrometer by seep/w software. The results were then compared with the observed data.The rapid ‎drawdown of the dam reservoir is one of the most common situations occurring in the lifetime of a dam. For this reason, one of the main factors in the design of the upstream slope is the rapid drainage of the reservoir. In this case, the upstream slope is in a critical condition and the slope may be unstable. When the water surface in the reservoir is drawdown suddenly, the water level in the dam body does not decrease at the same time as the reservoir water level. The analysis of seepage from the earth dam body and calculation of the water loss play an important role in calculating the amount of pore water pressure, and, consequently, the stability analysis of the dam body. In addition, any seepage analysis is dependent on the hydraulic properties of the dam materials. In order to investigate the effect of hydraulic conductivity on the rapid drawdown of water level and the seepage, an experimental model was constructed of an earth dam. By accurate measurement of hydraulic parameters of the materials in saturated and unsaturated media, the flow through this model was modeled using a disk penetrometer by seep/w software. The results were then compared with the observed data

    Turbulent Flow Modeling at Tunnel Spillway Concave Bends and Prediction of Pressure using Artificial Neural Network

    Get PDF
    A tunnel spillway is one of the spillway types in which a high free surface flow velocity is established. The pressure increases in concave vertical bends due to the rotational acceleration and the nature of irregularities in the turbulent flow. Physical models are the best tools to analyze this phenomenon. The number of the required physical models to cover all practical prototype condition analysis is so large that makes it impractical in terms of placement and costs. Therefore, the FLOW-3D software has been chosen to analyze and produce a database of turbulent flow in tunnels concave bends covering all possible practical alternatives. Various tunnels with different discharges and geometries have been simulated by this software. The numerical results were verified with the experimental ones of the constructed physical model of Alborz Dam tunnel spillway, and a satisfactory agreement was obtained. Dimensional analysis is used to group the involved variables of the problem into dimensionless parameters. These parameters are utilized in the artificial neural network simulation. The results showed a correlation coefficient R2=0.95 between the dimensionless parameters obtained by the Flow-3D software and those predicted by the neaural network which leads to the conclusion that the artificial neural network based on the database obtained by the turbulent flow modeling in this regard is a powerful tool for pressure prediction

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic

    Optimization of water and land allocation in salinity and deficit- irrigation conditions at farm level in Qazvin plain.

    No full text
    Improper extraction of water from resources especially in arid and semi-arid regions leads to a decrease in the quality of water and soil resources. In such areas, management activities such as increasing water productivity in agricultural sector would be a key step towards sustainable development. Therefore, water resources management to improve the allocation of limited water supplies is essential. In this study, a non-linear programming optimization model have been combined with a AquaCrop model to determine the optimal water and land allocation considering the quality issues of both water and soil resources with focusing on enhancing agriculture water productivity. For this purpose, the spatial variations of chemical and physical properties of soil in the Qazvin plain were taken into account. The soil of study site was divided into three salinity classes, and three weather conditions were identified by Standardized Precipitation Index (SPI). Moreover, five irrigation strategies were modeled under each weather condition. To understand the response of major crops under cultivation to water and salinity, the AquaCrop model was calibrated and validated (2005-2020) and utilized in the objective function. Accordingly, the production functions of the different products were obtained, and the cultivation area as well as amount of water consumption of the crops were optimized by using the target functions of maximum net income and maximum water use efficiency. The results showed that the model is capable of simulating crop yield in salinity and water deficit conditions. The coefficient of determination (R2) for barley, wheat and maize was equal to 0.86, 0.92, and 0.96, respectively. Findings reveal that total irrigation water could be reduced by 20% on average without profit reduction when compared to the profit of the present situation. Total economic profit could be increased by 18% on average through the optimization of water allocation and cropping pattern with the same water supply amount as that of the current situation. Also, the water productivity increased between 12 to 30% under these conditions. Therefore, the proposed model can efficiently optimize the amount of irrigation water and cultivation area on a regional scale considering salinity conditions

    Global Burden of Cardiovascular Diseases and Risks, 1990-2022

    No full text

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    No full text
    BackgroundEstimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period.Methods22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution.FindingsGlobal all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations.InterpretationGlobal adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic
    corecore