102 research outputs found
Design and Planning of Manufacturing Networks for Mass Customisation and Personalisation: Challenges and Outlook
AbstractManufacturers and service providers are called to design, plan and operate globalized manufacturing networks, addressing to challenges such as ever-decreasing lifecycles and increased product complexity. These factors, caused primarily by mass customisation and demand volatility, generate a number of issues related to the design and planning of manufacturing systems and networks, which are not holistically tackled in industrial and academic practices. The mapping of production performance requirements to process and production planning requires automated closed-loop control systems, which current systems fail to deliver. Technology-based business approaches are an enabler for increased enterprise performance. Towards that end, the issues discussed in this paper focus on challenges in the design and planning of manufacturing networks in a mass customization and personalization landscape. The development of methods and tools for supporting the dynamic configuration and optimal routing of manufacturing networks and facilities under cost, time, complexity and environmental constraints to support product-service personalization are promoted
Integration Framework of MES Toward Data Security Interoperation
© 2020, Springer Nature Switzerland AG. The core problem of the application of MES (Manufacturing Execution System) in intelligent manufacturing systems is integration, which solves the problem of the data interoperation between the distributed manufacturing systems. The previous researches on MES integration rarely considered the problem of system data security access. A three-level data security access mechanism based on the independence of the system administrators, security administrators, and security auditors is proposed which integrated into the MES integration framework to guarantee the business and engineering data security access for the related distributed clients. The principle is using the domain to make the logical isolation for different clients and data sources and applying the pre-defined data sharing rules for safe access. In the proposed MES integration framework model, the data interoperation between MES and the engineering software systems is discussed which includes ERP (Enterprise Resource Management), CAPP (Computer Aided Process Planning), DNC (Distribution Numerical Control), WMS (Warehouse Management System), and SCADA (Supervisory Control and Data Acquisition), etc., the implementation method of personalized data display GUI is discussed as well. The study is based on the KMMES developed by Wuhan KM-Software of China, and it has been deployed in over forty companies from the sections of aerospace, automotive, shipbuilding and other industries
Enabling Big Data Analytics at Manufacturing Fields of Farplas Automotive
Digitization and data-driven manufacturing process is needed for today's
industry. The term Industry 4.0 stands for today industrial digitization which
is defined as a new level of organization and control over the entire value
chain of the life cycle of products; it is geared towards increasingly
individualized customer's high-quality expectations. However, due to the
increase in the number of connected devices and the variety of data, it has
become difficult to store and analyze data with conventional systems. The
motivation of this paper is to provide an overview of the understanding of the
big data pipeline, providing a real-time on-premise data acquisition, data
compression, data storage and processing with Apache Kafka and Apache Spark
implementation on Apache Ha-doop cluster, and identifying the challenges and
issues occurring with implementation the Farplas manufacturing company, which
is one of the biggest Tier 1 automotive supplier in Turkey, to study the new
trends and streams related to topics via Industry 4.0.Comment: 8 page
Technology-based Product-services for Supporting Frugal Innovation
In recent years, European manufacturing companies are gradually applying innovative PSS (Product Service Systems), as strategic opportunity for differentiating from competitors, offering an integrated bundle of products and services, targeted on specific needs of different customers. At the same time, frugal innovation has also surged as a new business concept based upon an intelligent use of resources to fulfill region-dependent customers' needs. Both approaches bring forth rethinking of established business models, which in turn asks for an in-depth analysis of the implications on the company organization and infrastructure, at supply chain and plant levels, urging towards manufacturing networks and reconfigurable assembly lines. This paper presents a formalized framework to support product-service design and the related business model characterization, in the context of frugal innovation. The methodology is applied to three real industrial scenarios respectively in the aeronautics, the domestic appliances and the machinery industry, which are analyzed within the framework of the H2020 European funded project 'ProRegio'
Simulation study of large production network robustness in uncertain environment
Robustness is an important success factor for production networks in which the operation of enterprises is subjected to an uncertain environment. In this paper, the robustness of networks is studied as a function of network size. The study is performed through a simulation experiment in which the uncertain environment is modelled by introducing perturbations in demand. The decision-making model mimics the behaviour of socially connected human subjects. The results show how robustness and production rate are affected by system size and social network structure, and how this is relevant for the design and operation of future manufacturing systems.This work was partially supported by the Portuguese National Funding Agency for Science, Research and Technology (FCT), Grant No. UID/CEC/00319/2013, and by the Slovenian Research Agency, Grant No. P2-0270.info:eu-repo/semantics/publishedVersio
Different Perspectives of a Factory of the Future: An Overview
Digitalfactory,andCloudManufacturingaretwoapproaches that aim at addressing the Factory of the Future, i.e., to provide digital support to manufacturing factories. They find their roots in two different geographical areas, respectively Europe and China, and therefore presents some differences as well as the same goal of building the factory of the future. In this paper, we present both the digital factory and the cloud manufacturing approaches and discuss their differences
Analysing the impact of rescheduling time in hybrid manufacturing control
Hybrid manufacturing control architectures merge the benefits of hierarchical and heterarchical approaches. Disturbances can be handled at upper or lower decision levels, depending on the type of disturbance, its impact and the time the control system has to react. This paper focuses particularly on a disturbance handling mechanism at upper decision levels using a rescheduling manufacturing method. Such rescheduling is more complex that the offline scheduling since the control system must take into account the current system status, obtain a satisfactory performance under the new conditions, and also come up with a new schedule in a restricted amount of time. Then, this paper proposes a simple and generic rescheduling method which, based on the satisfying principle, analyses the trade-off between the rescheduling time and the performance achieved after a perturbation. The proposed approach is validated on a simulation model of a realistic assembly cell and results demonstrate that adaptation of the rescheduling time might be beneficial in terms of overall performance and reactivity.info:eu-repo/semantics/publishedVersio
Managing changes initiated by industrial big data technologies : a technochange management model
With the adoption of Internet of Things and advanced data analytical technologies in manufacturing firms, the industrial sector has launched an evolutionary journey toward the 4th industrial revolution, or so called Industry 4.0. Industrial big data is a core component to realize the vision of Industry 4.0. However, the implementation and usage of industrial big data tools in manufacturing firms will not merely be a technical endeavor, but can also lead to a thorough management reform. By means of a comprehensive review of literature related to Industry 4.0, smart manufacturing, industrial big data, information systems (IS) and technochange management, this paper aims to analyze potential changes triggered by the application of industrial big data in manufacturing firms, from technological, individual and organizational perspectives. Furthermore, in order to drive these changes more effectively and eliminate potential resistance, a conceptual technochange management model was developed and proposed. Drawn upon theories reported in literature of IS technochange management, this model proposed four types of interventions that can be used to copy with changes initiated by industrial big data technologies, including human process intervention, techno-structural intervention, human resources management intervention and strategic intervention. This model will be of interests and value to practitioners and researchers concerned with business reforms triggered by Industry 4.0 in general and by industrial big data technologies in particular
Advanced Technologies for Oral Controlled Release: Cyclodextrins for oral controlled release
Cyclodextrins (CDs) are used in oral pharmaceutical formulations, by means of inclusion complexes formation, with the following advantages for the drugs: (1) solubility, dissolution rate, stability and bioavailability enhancement; (2) to modify the drug release site and/or time profile; and (3) to reduce or prevent gastrointestinal side effects and unpleasant smell or taste, to prevent drug-drug or drug-additive interactions, or even to convert oil and liquid drugs into microcrystalline or amorphous powders. A more recent trend focuses on the use of CDs as nanocarriers, a strategy that aims to design versatile delivery systems that can encapsulate drugs with better physicochemical properties for oral delivery. Thus, the aim of this work was to review the applications of the CDs and their hydrophilic derivatives on the solubility enhancement of poorly water soluble drugs in order to increase their dissolution rate and get immediate release, as well as their ability to control (to prolong or to delay) the release of drugs from solid dosage forms, either as complexes with the hydrophilic (e.g. as osmotic pumps) and/ or hydrophobic CDs. New controlled delivery systems based on nanotechonology carriers (nanoparticles and conjugates) have also been reviewed
- …