20 research outputs found

    Invariant recognition of polychromatic images of Vibrio cholerae O1

    Get PDF
    7 pages, 5 figures.-- Ā©2002 Society of Photo-Optical Instrumentation Engineers.Cholera is an acute intestinal infectious disease. It has claimed many lives throughout history, and it continues to be a global health threat. Cholera is considered one of the most important emergence diseases due its relation with global climate changes. Automated methods such as optical systems represent a new trend to make more accurate measurements of the presence and quantity of this microorganism in its natural environment. Automatic systems eliminate observer bias and reduce the analysis time.We evaluate the utility of coherent optical systems with invariant correlation for the recognition of Vibrio cholerae O1. Images of scenes are recorded with a CCD camera and decomposed in three RGB channels. A numeric simulation is developed to identify the bacteria in the different samples through an invariant correlation technique. There is no variation when we repeat the correlation and the variation between images correlation is minimum. The position-, scale-, and rotation-invariant recognition is made with a scale transform through the Mellin transform. The algorithm to recognize Vibrio cholerae O1 is the presence of correlation peaks in the green channel output and their absence in red and blue channels. The discrimination criterion is the presence of correlation peaks in red, green, and blue channels.Peer reviewe

    Septum Development in <i>Neurospora crassa</i>: The Septal Actomyosin Tangle

    No full text
    <div><p>Septum formation in <i>Neurospora crassa</i> was studied by fluorescent tagging of actin, myosin, tropomyosin, formin, fimbrin, BUD-4, and CHS-1. In chronological order, we recognized three septum development stages: 1) septal actomyosin tangle (SAT) assembly, 2) contractile actomyosin ring (CAR) formation, 3) CAR constriction together with plasma membrane ingrowth and cell wall construction. Septation began with the assembly of a conspicuous tangle of cortical actin cables (SAT) in the septation site >5 min before plasma membrane ingrowth. Tropomyosin and myosin were detected as components of the SAT from the outset. The SAT gradually condensed to form a proto-CAR that preceded CAR formation. During septum development, the contractile actomyosin ring remained associated with the advancing edge of the septum. Formin and BUD-4 were recruited during the transition from SAT to CAR and CHS-1 appeared two min before CAR constriction. Actin patches containing fimbrin were observed surrounding the ingrowing septum, an indication of endocytic activity. Although the trigger of SAT assembly remains unclear, the regularity of septation both in space and time gives us reason to believe that the initiation of the septation process is integrated with the mechanisms that control both the cell cycle and the overall growth of hyphae, despite the asynchronous nature of mitosis in <i>N. crassa</i>.</p></div

    Dynamics of MYO-2-GFP filaments during SAT and CAR assembly.

    No full text
    <p>MYO-2 filaments derived from a recently formed septum moved towards (arrows) the next septation site.</p

    Details of SAT and CAR assembly during septation and an instance of CAR abortion.

    No full text
    <p>(A) Normal septation. Actin cables emanate from a recently formed septum and assemble a new SAT that moves towards (arrows) the next septation site where it coalesces to form a CAR (arrowhead) (B) CAR abortion. In this instance, a SAT began to be established at the expected site (arrows); by 6āˆ¶30 min it had reached a maximum size which was much smaller than a normal SAT and by 9āˆ¶30 min it had almost disappeared (asterisk); no septum was formed, instead the actin cables from the remains of the aborted CAR migrated towards a new site (arrowhead). This time the SAT proceeded to form a normal CAR (arrowhead). Scale Barā€Š=ā€Š10 Āµm.</p
    corecore