10 research outputs found

    DEM Simulation of Liquefaction-Induced Lateral Spreading

    Get PDF
    This paper reports the results of a model-based simulation of 1g shake table tests of sloping saturated granular deposits subjected to seismic excitations. The simulation technique utilizes a transient fully-coupled continuum fluid discrete particle model of the watersaturated soil. The fluid (water) phase is idealized at a macroscale using an Eulerian averaged form of Navier-Stokes equations. The solid particles are modeled at the microscale as an assemblage of discrete spheres using the discrete element method. The interphase momentum transfer is accounted for using an established relationship. Numerical simulations were conducted to investigate the liquefaction induced lateral spreading of a mild-sloped semi-infinite deposit subjected to a dynamic base excitation. The employed model reproduced a number of response patterns observed in the 1g experiment. In addition, the simulation results captured the initiation of sliding at failure planes, the propagation of liquefaction front and associated large strain localization, and the redistribution of void space during shaking

    LEAP-2017 Simulation Exercise: Calibration of Constitutive Models and Simulation of the Element Tests

    Get PDF
    This paper presents a summary of the element test simulations (calibration simulations) submitted by 11 numerical simulation (prediction) teams that participated in the LEAP-2017 prediction exercise. A significant number of monotonic and cyclic triaxial (Vasko, An investigation into the behavior of Ottawa sand through monotonic and cyclic shear tests. Masters Thesis, The George Washington University, 2015; Vasko et al., LEAP-GWU-2015 Laboratory Tests. DesignSafe-CI, Dataset, 2018; El Ghoraiby et al., LEAP 2017: Soil characterization and element tests for Ottawa F65 sand. The George Washington University, Washington, DC, 2017; El Ghoraiby et al., LEAP-2017 GWU Laboratory Tests. DesignSafe-CI, Dataset, 2018; El Ghoraiby et al., Physical and mechanical properties of Ottawa F65 Sand. In B. Kutter et al. (Eds.), Model tests and numerical simulations of liquefaction and lateral spreading: LEAP-UCD-2017. New York: Springer, 2019) and direct simple shear tests (Bastidas, Ottawa F-65 Sand Characterization. PhD Dissertation, University of California, Davis, 2016) are available for Ottawa F-65 sand. The focus of this element test simulation exercise is to assess the performance of the constitutive models used by participating team in simulating the results of undrained stress-controlled cyclic triaxial tests on Ottawa F-65 sand for three different void ratios (El Ghoraiby et al., LEAP 2017: Soil characterization and element tests for Ottawa F65 sand. The George Washington University, Washington, DC, 2017; El Ghoraiby et al., LEAP-2017 GWU Laboratory Tests. DesignSafe-CI, Dataset, 2018; El Ghoraiby et al., Physical and mechanical properties of Ottawa F65 Sand. In B. Kutter et al. (Eds.), Model tests and numerical simulations of liquefaction and lateral spreading: LEAP-UCD-2017. New York: Springer, 2019). The simulated stress paths, stress strain responses, and liquefaction strength curves show that majority of the models used in this exercise are able to provide a reasonably good match to liquefaction strength curves for the highest void ratio (0.585) but the differences between the simulations and experiments become larger for the lower void ratios (0.542 and 0.515)

    LEAP-2017: Comparison of the Type-B Numerical Simulations with Centrifuge Test Results

    Get PDF
    This paper presents comparisons of 11 sets of Type-B numerical simulations with the results of a selected set of centrifuge tests conducted in the LEAP-2017 project. Time histories of accelerations, excess pore water pressures, and lateral displacement of the ground surface are compared to the results of nine centrifuge tests. A number of numerical simulations showed trends similar to those observed in the experiments. While achieving a close match to all measured responses (accelerations, pore pressures, and displacements) is quite challenging, the numerical simulations show promising capabilities that can be further improved with the availability of additional high-quality experimental results

    Analysis of Site Liquefaction Using Earthquake Records

    No full text

    Round robin test on angle of repose: DEM simulation results collected from 16 groups around the world

    Get PDF
    International audienceThe round robin test (the simultaneous analysis of the same problem) is a method to investigate the variance and sensitivity of results provided by different analysts for a given problem and the reliability of the particular software used by each group participating in the test. A round robin test has been conducted for the traditional numerical method (e.g., finite difference method), but not yet for the discrete element method (DEM). This paper presents the results of the first ever round robin test on the DEM simulation for the angle of repose, involving 16 groups from around the world using different softwares. Within the scope of this round robin test, most groups reported similar simulation results for the angle of repose that differed only by a few degrees from the average of the experimental values, which was initially concealed from participants. There was also good agreement on the degree of variance of the angle of repose. In addition, this paper revealed the recent trends on the interparticle constitutive models and DEM softwares by considering the reports obtained from the participants
    corecore