25 research outputs found

    The use of lithium heteropolytungstate as an alternative to bromoform for heavy media separations

    Get PDF
    This report describes a suggested new procedure for heavy media separation using non-toxic lithium heteropolytungstate as a replacement for bromoform and other halogenated organic solvents. This work was carried out as part of the Science Facilities’ Maintenance and Development of Capability (MaDCap) project. Lithium heteropolytungstate is commonly known as LST, relating to its composition of lithium, sodium and tungsten. The report firstly describes heavy liquids that were traditionally used for this purpose and then details a new heavy media separation methodology using LST. Results indicate that LST is by far the safest and most efficient heavy liquid suitable for this type of mineral separation. Issues regarding LST stability indicate potential contamination through initial sample preparation methods. A small study indicates that steel swarf from disc milling is responsible for heteropoly blue contamination of the LST and not pyrite as suggested by the manufacturers. It is therefore critical that extreme care should be taken when undertaking any sample preparation prior to heavy liquid separation

    Palaeoclimatic implications of high-resolution clay mineral assemblages preceding and across the onset of the Palaeocene–Eocene Thermal Maximum, North Sea Basin

    Get PDF
    This is the final version of the article. Available from the Mineralogical Society via the DOI in this record.Understanding the composition of clay-rich sediments and their transportation into proximal marine basins allows us to better decipher hydroclimatic changes before and within the Palaeocene–Eocene Thermal Maximum (PETM). Only a limited number of such studies exists from the North Sea Basin, which was proximal to the volcanic activity and early rifting hypothesized to have triggered the PETM. The present study examines core material from well 22/10a-4, UK North Sea, as it exhibits an exceptionally expanded and almost stratigraphically complete fine-grained sedimentary sequence suitable for high-resolution analysis. Quantitative Newmod-for-Windowsℱ-modelled clay mineral assemblages, rather than traditional semi-quantitative estimates, are dominated by smectite-rich, interlayered illite-smectite that probably developed from volcanogenic deposits on continental landmasses. Soil development before the PETM is consistent with the existence of a seasonal tropical climate with a prolonged dry season. A striking rise and fall of kaolinite content within the PETM onset, prior to the principal carbon-isotope excursion, is reported here. This variation is interpreted as a signal of an enhanced hydrologic cycle producing an increase in erosionally derived kaolinite, followed by a dampening of this detrital source as sea-levels rose. Global variations in PETM kaolinite concentrations are consistent with a latitudinal shift in patterns of precipitation in models of global warming.S.K. was partly supported by NERC Isotope Geosciences Faculty Grant IP/1547/0515. This paper is published with the permission of the Executive Director of the British Geological Survey (NERC). This work was supported by the BGS Climate and Landscape Change research programme

    An improved approach to characterize potash-bearing evaporite deposits, evidenced in North Yorkshire, United Kingdom

    Get PDF
    Traditionally, potash mineral deposits have been characterized using downhole geophysical logging in tandem with geochemical analysis of core samples to establish the critical potassium (% K2O) content. These techniques have been employed in a recent exploration study of the Permian evaporite succession of North Yorkshire, United Kingdom, but the characterization of these complex deposits has been led by mineralogical analysis, using quantitative X-ray diffraction (QXRD). The novel QXRD approach provides data on K content with the level of confidence needed for reliable reporting of resources and also identifies and quantifies more precisely the nature of the K-bearing minerals. Errors have also been identified when employing traditional geochemical approaches for this deposit, which would have resulted in underestimated potash grades. QXRD analysis has consistently identified polyhalite (K2Ca2Mg(SO4)4·2(H2O) in the Fordon (Evaporite) Formation and sylvite (KCl) in the Boulby Potash and Sneaton Potash members as the principal K-bearing host minerals in North Yorkshire. However, other K hosts, including kalistrontite (K2Sr(SO4)2) a first recorded occurrence in the UK, and a range of boron-bearing minerals have also been detected. Application of the QXRD-led characterization program across the evaporitic basin has helped to produce a descriptive, empirical model for the deposits, including the polyhalite-bearing Shelf and Basin seams and two, newly discovered sylvite-bearing bittern salt horizons, the Pasture Beck and Gough seams. The characterization program has enabled a polyhalite mineral inventory in excess of 2.5 billion metric tons (Bt) to be identified, suggesting that this region possesses the world’s largest known resource of polyhalite. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed

    Estimating specific surface area of fine stream bed sediments from geochemistry

    Get PDF
    Specific surface area (SSA) of headwater stream bed sediments is a fundamental property which determines the nature of sediment surface reactions and influences ecosystem-level, biological processes. Measurements of SSA – commonly undertaken by BET nitrogen adsorption – are relatively costly in terms of instrumentation and operator time. A novel approach is presented for estimating fine (2.5 mg kg−1), four elements were identified as significant predictors of SSA (ordered by decreasing predictive power): V > Ca > Al > Rb. The optimum model from these four elements accounted for 73% of the variation in bed sediment SSA (range 6–46 m2 g−1) with a root mean squared error of prediction – based on leave-one-out cross-validation – of 6.3 m2 g−1. It is believed that V is the most significant predictor because its concentration is strongly correlated both with the quantity of Fe-oxides and clay minerals in the stream bed sediments, which dominate sediment SSA. Sample heterogeneity in SSA – based on triplicate measurements of sub-samples – was a substantial source of variation (standard error = 2.2 m2 g−1) which cannot be accounted for in the regression model. The model was used to estimate bed sediment SSA at the other 1792 sites and at 30 duplicate sites where an extra sediment sample had been collected, 25 m from the original site. By delineating sub-catchments for the headwater sediment sites only those sub-catchments were selected with a dominant (>50% of the sub-catchment area) bedrock formation and land use type; the bedrock and land use classes accounted for 39% and 7% of the variation in bed sediment SSA, respectively. Variation in estimated, fine bed sediment SSA from the paired, duplicate sediment sites was small (2.7 m2 g−1), showing that local variation in SSA at stream sites is modest when compared to that between catchments. How the approach might be applied in other environments and its potential limitations are discussed

    Heavy mineral analysis by ICP-AES a tool to aid sediment provenancing

    Get PDF
    Correlation and provenancing of sediments/sedimentary rocks can be achieved by several techniques; a common approach is through the identification and quantification of heavy minerals using a petrological microscope. This can be time consuming, the analysis of heavy minerals by inductively coupled plasma atomic emission spectroscopy offers a faster alternative, by determining key elements associated with specific heavy minerals. Here we outline a method for determining heavy mineral species though ICP-AES using high temperature fusion with a lithium metaborate flux to ensure complete dissolution of resistate minerals. The method was tested in a provenance study of desert sands from the United Arab Emirates. The results are compared with those derived from traditional optical microscopy. These show good agreement for minerals with specific geochemical signatures, whilst the overall geochemistry of the heavy mineral concentrate was diagnostic of potential sediment sources. This geochemical approach is capable of processing large numbers of samples rapidly and is advocated as a screening technique. A combination of geochemical and mineralogical data produced by these techniques provides a powerful diagnostic tool for studies of heavy mineral signatures in sediments frequently used in mineral reconnaissance, paleogeographic reconstruction and reservoir characterisation in the petroleum industry

    Gaseous carbonation of cementitious backfill for geological disposal of radioactive waste: Nirex Reference Vault Backfill

    Get PDF
    The ability of Nirex Reference Vault Backfill (NRVB), a cement backfill material, to capture carbon dioxide from Intermediate Level Radioactive waste packages after repository backfilling, has been assessed. Large-scale trials assessed the physical and chemical reaction of carbon dioxide with the hardened backfill grout. A carbonation front, radial in nature, was observed extending into the grout and three distinct regions were identified in the hardened grouts. A carbonated region, a carbonation front, and a partially carbonated zone were discerned. Potassium, and to a lesser extent sodium, were concentrated in the carbonated region just behind of the main reaction front. The area just ahead of the carbonation front was enriched in both sulphur and aluminium, while sulphur was found to be depleted from the carbonated material behind the main reaction front. Within the main carbonated region, virtually all of the hydrated cement phases were found to be carbonated, and carbonation extended throughout the grout, even within material indicated by phenolphthalein solution to be uncarbonated. Importantly, carbonation was observed to impact both the mineral assemblage and porosity of the cement backfill; it is therefore important to understand these characteristics in terms of the long term evolution of NRVB and its groundwater buffering safety function within the geological disposal facility near-field

    Sources, Composition, and Export of Particulate Organic Matter Across British Estuaries

    Get PDF
    Estuaries receive and process a large amount of particulate organic carbon (POC) prior to its export into coastal waters. Studying the origin of this POC is key to understanding the fate of POC and the role of estuaries in the global carbon cycle. Here, we evaluated the concentrations of POC, as well as particulate organic nitrogen (PON), and used stable carbon and nitrogen isotopes to assess their sources across 13 contrasting British estuaries during five different sampling campaigns over 1 year. We found a high variability in POC and PON concentrations across the salinity gradient, reflecting inputs, and losses of organic material within the estuaries. Catchment land cover appeared to influence the contribution of POC to the total organic carbon flux from the estuary to coastal waters, with POC contributions >36% in estuaries draining catchments with a high percentage of urban/suburban land, and <11% in estuaries draining catchments with a high peatland cover. There was no seasonal pattern in the isotopic composition of POC and PON, suggesting similar sources for each estuary over time. Carbon isotopic ratios were depleted (−26.7 ± 0.42‰, average ± sd) at the lowest salinity waters, indicating mainly terrigenous POC (TPOC). Applying a two-source mixing model, we observed high variability in the contribution of TPOC at the highest salinity waters between estuaries, with a median value of 57%. Our results indicate a large transport of terrigenous organic carbon into coastal waters, where it may be buried, remineralized, or transported offshore

    Contrasting estuarine processing of dissolved organic matter derived from natural and human‐impacted landscapes

    Get PDF
    The flux of terrigenous organic carbon through estuaries is an important and changing, yet poorly understood, component of the global carbon cycle. Using dissolved organic carbon (DOC) and fluorescence data from thirteen British estuaries draining catchments with highly variable land uses, we show that land use strongly influences the fate of DOC across the land-ocean transition via its influence on the composition and lability of the constituent dissolved organic matter (DOM). In estuaries draining peatland-dominated catchments, DOC was highly correlated with biologically refractory “humic-like” terrigenous material which tended to be conservatively transported along the salinity gradient. In contrast, there was a weaker correlation between DOC and DOM components within estuaries draining catchments with a high degree of human impact, i.e. relatively larger percentage of arable and (sub-)urban land uses. These arable and (sub-)urban estuaries contain a high fraction of bioavailable “protein-like” material that behaved non-conservatively, with both DOC removals and additions occurring. In general, estuaries draining catchments with a high percentage of peatland (≄18 %) have higher area-specific estuarine exports of DOC (>13 g C m-2 yr-1) compared to those estuaries draining catchments with a high percentage (≄46 %) of arable and (sub-)urban land uses (<2.1 g C m-2 yr-1). Our data indicate that these arable and (sub-)urban estuaries tend to export, on average, ∌50 % more DOC to coastal areas than they receive from rivers, due to net anthropogenic derived organic matter inputs within the estuary

    The mineralogy and surface area of till samples from Buckinghamshire, Lancashire and Norfolk

    Get PDF
    This report describes the results of mineralogical and surface area analysis completed on the ‘fine matrix’ (<425 ÎŒm material) of a suite of tills from England. The work was carried out as part of the ongoing BGS project, ‘Physical Properties and behaviour of UK rocks and soils’ under the Land Use and Development Science Theme. The first part of the report gives a summary of previous BGS mineralogical studies of till deposits. A summary of analytical methods employed (X-ray diffraction analysis and surface area determinations) is then provided and the results discussed with reference to their likely effect on the engineering performance. Analyses indicate that the till samples are ‘fine matrix’-rich and typically composed of location-dependant varying proportions of quartz, calcite and phyllosilicates/clay minerals together with a range of minor-trace constituents. Given their typically ‘fine-matrix’-dominated nature, the geotechnical behaviour of the till samples examined is likely to be influenced by both the proportion of phyllosilicates/clay minerals present and their composition and can be indicated by the surface area measurements. This being the case, the tills from Thetford (BHs 2 and 5) and Milton Keynes would be expected to show the most problematic engineering behaviour. Although the mineralogy of till deposits are typically thought to be derived from several sources, mineral and clay mineral assemblages suggest that the tills in this study are predominantly derived from underlying lithologies. Tills from various locations in Norfolk other than Thetford appear to be principally derived from the Norwich and Red Crag formations with some input from the Upper Chalk whilst the more carbonate-rich Thetford tills appear to have a greater Upper Chalk input. The mineralogically distinct Lancashire tills suggest Permo-Triassic sources, probably the Mercia Mudstone Group while the Milton Keynes tills indicate that the underlying Jurassic limestones and mudstones probably produced their sediment supply

    Mineralogical analysis of further stream sediments from Nigeria

    Get PDF
    This report presents the results of mineralogical characterisation of a further suite of sixty stream sediment samples from Nigeria. The samples were submitted for analysis by Dr Roger Key (BGS) and his team as part of the ‘Technical Assistance Services for the Geochemical Mapping of Nigeria’ project which aims to provide baseline geoscientific information for mineral exploration and environmental management through a study of the distribution of important metallic elements. Particular interest was expressed in determining the hosts for the elevated levels of Zr in the stream sediments. Full sample details, including Zr geochemical data from inductively coupled plasma-mass spectrometry (ICP-MS) are listed in XTable 1X. This study follows a smaller pilot study carried out on a suite of seven stream sediments samples from the same project (Kemp et al., 2009)
    corecore