4,325 research outputs found

    Unexpected Effect of Internal Degrees of Freedom on Transverse Phonons in Supercooled Liquids

    Full text link
    We show experimentally that in a supercooled liquid composed of molecules with internal degrees of freedom the internal modes contribute to the frequency dependent shear viscosity and damping of transverse phonons, which results in an additional broadening of the transverse Brillouin lines. Earlier, only the effect of internal modes on the frequency dependent bulk viscosity and damping of longitudinal phonons was observed and explained theoretically in the limit of weak coupling of internal degrees of freedom to translational motion. A new theory is needed to describe this new effect. We also demonstrate, that the contributions of structural relaxation and internal processes to the width of the Brillouin lines can be separated by measurements under high pressure

    Genome-wide analysis points to roles for extracellular matrix remodeling, the visual cycle, and neuronal development in myopia

    Get PDF
    Myopia, or nearsightedness, is the most common eye disorder, resulting primarily from excess elongation of the eye. The etiology of myopia, although known to be complex, is poorly understood. Here we report the largest ever genome-wide association study (43,360 participants) on myopia in Europeans. We performed a survival analysis on age of myopia onset and identified 19 significant associations (p < 5e-8), two of which are replications of earlier associations with refractive error. These 19 associations in total explain 2.7% of the variance in myopia age of onset, and point towards a number of different mechanisms behind the development of myopia. One association is in the gene PRSS56, which has previously been linked to abnormally small eyes; one is in a gene that forms part of the extracellular matrix (LAMA2); two are in or near genes involved in the regeneration of 11-cis-retinal (RGR and RDH5); two are near genes known to be involved in the growth and guidance of retinal ganglion cells (ZIC2, SFRP1); and five are in or near genes involved in neuronal signaling or development. These novel findings point towards multiple genetic factors involved in the development of myopia and suggest that complex interactions between extracellular matrix remodeling, neuronal development, and visual signals from the retina may underlie the development of myopia in humans

    Efficient Replication of Over 180 Genetic Associations with Self-Reported Medical Data

    Get PDF
    While the cost and speed of generating genomic data have come down dramatically in recent years, the slow pace of collecting medical data for large cohorts continues to hamper genetic research. Here we evaluate a novel online framework for amassing large amounts of medical information in a recontactable cohort by assessing our ability to replicate genetic associations using these data. Using web-based questionnaires, we gathered self-reported data on 50 medical phenotypes from a generally unselected cohort of over 20,000 genotyped individuals. Of a list of genetic associations curated by NHGRI, we successfully replicated about 75% of the associations that we expected to (based on the number of cases in our cohort and reported odds ratios, and excluding a set of associations with contradictory published evidence). Altogether we replicated over 180 previously reported associations, including many for type 2 diabetes, prostate cancer, cholesterol levels, and multiple sclerosis. We found significant variation across categories of conditions in the percentage of expected associations that we were able to replicate, which may reflect systematic inflation of the effects in some initial reports, or differences across diseases in the likelihood of misdiagnosis or misreport. We also demonstrated that we could improve replication success by taking advantage of our recontactable cohort, offering more in-depth questions to refine self-reported diagnoses. Our data suggests that online collection of self-reported data in a recontactable cohort may be a viable method for both broad and deep phenotyping in large populations

    Fabrication of large-area CCD detectors on high-purity, float-zone silicon

    Get PDF
    In this report on the fabrication of a 1024 x 1024 charge coupled device (CCD) imager to be used as a soft x-ray sensor onboard the Advanced X-ray Astronomical Facility (AXAF), the following conclusions were found: the dislocations that limited the performance of the high resistivity imager were characterized; the sources of stress were identified and the dislocations found were eliminated; and a charge transfer inefficiency (CTI) of 10(exp -6) and read noise as low as 1.3/e was demonstrated. This sensor must have low noise and a low CTI and must be radiation hardened to withstand any radiation damage from a space environment

    Searching for Earth analogues around the nearest stars: the disk age-metallicity relation and the age distribution in the Solar Neighbourhood

    Full text link
    The chemical composition of Earth's atmosphere has undergone substantial evolution over the course of its history. It is possible, even likely, that terrestrial planets in other planetary systems have undergone similar changes; consequently, the age distribution of nearby stars is an important consideration in designing surveys for Earth-analogues. Valenti & Fischer (2005) provide age and metallicity estimates for 1039 FGK dwarfs in the Solar Neighbourhood. Using the Hipparcos catalogue as a reference to calibrate potential biases, we have extracted volume-limited samples of nearby stars from the Valenti-Fischer dataset. Unlike other recent investigations, our analysis shows clear evidence for an age-metallicity relation in the local disk, albeit with substantial dispersion at any epoch. The mean metallicity increases from -0.3 dex at a lookback time of ~10 Gyrs to +0.15 dex at the present day. Supplementing the Valenti-Fischer measurements with literature data to give a complete volume-limited sample, the age distribution of nearby FGK dwarfs is broadly consistent with a uniform star-formation rate over the history of the Galactic disk. In striking contrast, most stars known to have planetary companions are younger than 5 Gyrs; however, stars with planetary companions within 0.4 AU have a significantly flatter age distribution, indicating that those systems are stable on timescales of many Gyrs. Several of the older, lower metallicity host stars have enhanced [alpha/Fe] ratios, implying membership of the thick disk. If the frequency of terrestrial planets is also correlated with stellar metallicity, then the median age of such planetary system is likely to be ~3 Gyrs. We discuss the implications of this hypothesis in designing searches for Earth analogues among the nearby stars.Comment: Accepted for publication in Ap

    Growing Correlation Length on Cooling Below the Onset of Caging in a Simulated Glass-Forming Liquid

    Get PDF
    We present a calculation of a fourth-order, time-dependent density correlation function that measures higher-order spatiotemporall correlations of the density of a liquid. From molecular dynamics simulations of a glass-forming Lennard-Jones liquid, we find that the characteristic length scale of this function has a maximum as a function of time which increases steadily beyond the characteristic length of the static pair correlation function g(r)g(r) in the temperature range approaching the mode coupling temperature from above

    Hydrophobic and ionic-interactions in bulk and confined water with implications for collapse and folding of proteins

    Full text link
    Water and water-mediated interactions determine thermodynamic and kinetics of protein folding, protein aggregation and self-assembly in confined spaces. To obtain insights into the role of water in the context of folding problems, we describe computer simulations of a few related model systems. The dynamics of collapse of eicosane shows that upon expulsion of water the linear hydrocarbon chain adopts an ordered helical hairpin structure with 1.5 turns. The structure of dimer of eicosane molecules has two well ordered helical hairpins that are stacked perpendicular to each other. As a prelude to studying folding in confined spaces we used simulations to understand changes in hydrophobic and ionic interactions in nano droplets. Solvation of hydrophobic and charged species change drastically in nano water droplets. Hydrophobic species are localized at the boundary. The tendency of ions to be at the boundary where water density is low increases as the charge density decreases. Interaction between hydrophobic, polar, and charged residue are also profoundly altered in confined spaces. Using the results of computer simulations and accounting for loss of chain entropy upon confinement we argue and then demonstrate, using simulations in explicit water, that ordered states of generic amphiphilic peptide sequences should be stabilized in cylindrical nanopores

    Simulation of thermal conductivity and heat transport in solids

    Full text link
    Using molecular dynamics (MD) with classical interaction potentials we present calculations of thermal conductivity and heat transport in crystals and glasses. Inducing shock waves and heat pulses into the systems we study the spreading of energy and temperature over the configurations. Phonon decay is investigated by exciting single modes in the structures and monitoring the time evolution of the amplitude using MD in a microcanonical ensemble. As examples, crystalline and amorphous modifications of Selenium and SiO2\rm{SiO_2} are considered.Comment: Revtex, 8 pages, 11 postscript figures, accepted for publication in PR
    corecore