3,818 research outputs found

    The solar spectral irradiance 1200-3184 a near solar maximum, 15 July 1980

    Get PDF
    Full disk solar spectral irradiances near solar maximum were obtained in the spectral range 1200 to 3184 A at a spectral resolution of approximately 1 A from rocket observations above White Sands Missile Range. Comparison with measurements made during solar minimum confirm a large increase at solar maximum in the solar irradiance near 1200 A with no change within the measurement errors near 2000 A. Irradiances in the range 1900 to 2100 A are in excellent agreement with previous measurements, and those in the 2100 to 2500 A range are lower than separate previous results in this range. Agreement is found with previous values 2500 to 2900 A A, and then fall below those values 2900 to 3184 A

    Visible and near-ultraviolet spectroscopy at Thule AFB (76.5 N) from January 28 - February 15, 1988

    Get PDF
    Near-ultraviolet and visible spectrographs identical to those employed at McMurdo Station, Antarctica (77.8 S) during the austral spring seasons of 1986 and 1987 were used to study the stratosphere above Thule, Greenland (76.5 N) during early spring, 1988. Observations were carried out both at night using the direct moon as a light source, and during the day by collecting the scattered light from the zenith sky when solar zenith angles were less than about 94.5 degrees. Excellent meteorological conditions prevailed in the troposphere and stratosphere at Thule. Surface weather was extremely clear over most of the period, facilitating measurements of the direct light from the moon. The lower stratospheric arctic polar vortex was located very near Thule throughout the observing period, and temperature at the 30 mbar level were typically below -80 C above Thule, according to the National Meteorological Center daily analyses. Thus conditions were favorable for polar stratospheric cloud formation above Thule. Total column ozone abundances were about 350 to 400 Dobson units, and did not suggest a clear temporal trend over the observing period. Stratospheric nitrogen dioxide measurements were complicated by the presence of a large component of tropospheric pollution on many occasions. Stratospheric nitrogen dioxide could be identified on most days using the absorption in the scattered light from the zenith sky, which greatly enhances the stratospheric airmass while suppressing the tropospheric contribution. These measurements suggest that the total vertical column abundance of nitrogen dioxide present over Thule in February was extremely low, sometimes as low as 3 x 10 to the 14th per sq cm. The abundance of nitrogen dioxide increased systemically from about 3 x 10 to the 14th in late January to 1.0 x 10 to the 15th per sq cm in mid-February, perhaps because of photolysis of N2O5 in the upper part of the stratosphere, near 25 to 35 km

    Near UV atmospheric absorption measurements from the DC-8 aircraft during the 1987 airborne Antarctic ozone experiment

    Get PDF
    During the Airborne Antarctic Ozone Experiment from 28 August to 30 September 1987 near UV zenith scattered sky measurements were made over Antarctic from the NASA DC-8 aircraft using a one third m spectrograph equipped with a diode-array detector. Scattered sky light data in the wavelength range 348 nm to 388 nm was spectrally analyzed for O3, NO2, OClO, and BrO column abundances. Slant column abudances of O3, NO2, OClO and BrO were determined, using a computer algorithm of non-linear and linear least square correlation of Antarctic scattered sky spectra to laboratory absorption cross section data. Using measured vertical electrochemical sonde ozone profiles from Palmer, Halley Bay, and the South Pole Stations the slant columns of O3 were converted into vertical column abundances. The vertical column amounts of NO2, OClO, and BrO were derived using vertical profiles calculated by a chemical model appropriate for Antarctica. NO2 vertical column abundances show steep latitudinal decrease with increasing latitude for all 13 flights carried out during the mission. In the regions where NO2 abudances are low, OClO and BrO were observed. The spatial and temporal vertical column abundances of these species are discussed in the context of the chemistry and dynamics in the antarctic polar vortex during the austral spring

    An extreme ultraviolet spectrometer experiment for the Shuttle Get Away Special Program

    Get PDF
    An extreme ultraviolet (EUV) spectrometer experiment operated successfully during the STS-7 mission in an experiment to measure the global and diurnal variation of the EUV airglow. The spectrometer is an F 3.5 Wadsworth mount with mechanical collimator, a 75 x 75 mm grating, and a bare microchannel plate detector providing a spectral resolution of 7 X FWHM. Read-out of the signal is through discrete channels or resistive anode techniques. The experiment includes a microcomputer, 20 Mbit tape recorder, and a 28V, 40 Ahr silver-zinc battery. It is the first GAS payload to use an opening door. The spectrometer's 0.1 x 4.2 deg field of view is pointed vertically out of the shuttle bay. During the STS-7 flight data were acquired continuously for a period of 5 hours and 37 minutes, providing spectra of the 570 A to 850 A wavelength region of the airglow. Five diurnal cycles of the 584 A emission of neutral helium and the 834 A emission of ionized atomic oxygen were recorded. The experiment also recorded ion events and pressure pulses associated with thruster firings. The experiment is to fly again on Mission 41-F

    Approximating the Maximum Overlap of Polygons under Translation

    Full text link
    Let PP and QQ be two simple polygons in the plane of total complexity nn, each of which can be decomposed into at most kk convex parts. We present an (1−ε)(1-\varepsilon)-approximation algorithm, for finding the translation of QQ, which maximizes its area of overlap with PP. Our algorithm runs in O(cn)O(c n) time, where cc is a constant that depends only on kk and ε\varepsilon. This suggest that for polygons that are "close" to being convex, the problem can be solved (approximately), in near linear time
    • …
    corecore