Lehigh University
Lehigh Preserve

Fritz Laboratory Reports Civil and Environmental Engineering

1942

Analysis of building frames with semi-rigid
connections, Trans:, ASCE, Vol. 107 (1942), p- 993,

Reprint No. 53 (42-1)

B. G.Johnston

E. H. Mount

Follow this and additional works at: http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-
reports

Recommended Citation
Johnston, B. G. and Mount, E. H., "Analysis of building frames with semi-rigid connections, Trans:, ASCE, Vol. 107 (1942), p. 993,

Reprint No. 53 (42-1)" (1942). Fritz Laboratory Reports. Paper 12185.
http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports/1215

This Technical Report is brought to you for free and open access by the Civil and Environmental Engineering at Lehigh Preserve. It has been accepted
for inclusion in Fritz Laboratory Reports by an authorized administrator of Lehigh Preserve. For more information, please contact

preserve@lehigh.edu.


http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fengr-civil-environmental-fritz-lab-reports%2F1215&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports?utm_source=preserve.lehigh.edu%2Fengr-civil-environmental-fritz-lab-reports%2F1215&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/engr-civil-environmental?utm_source=preserve.lehigh.edu%2Fengr-civil-environmental-fritz-lab-reports%2F1215&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports?utm_source=preserve.lehigh.edu%2Fengr-civil-environmental-fritz-lab-reports%2F1215&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports?utm_source=preserve.lehigh.edu%2Fengr-civil-environmental-fritz-lab-reports%2F1215&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports/1215?utm_source=preserve.lehigh.edu%2Fengr-civil-environmental-fritz-lab-reports%2F1215&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

Fm EN Talhini ‘
LG waw \/1 85, 2 is

.2
., BETHLEHEM. PENNSYcvana— ———.

AMERICAN SOCIETY OF CIVIL ENGINEERS
33 WEST §9TH STREET, NEW YORK, N. Y.

.

(-

Analysis‘of Building Frames with

Semi-Rigid Connections

BY
'BR_UCE JOHNSTON, ASSOC. M. AM. SOC. C. E,,
AND EDWARD H. MOUNT, ESQ.

i

AMERICAN
kR SOCIETY OF
cviL

AENGINEERS
FQUKDED.

1852
/

‘WITH DISCUSSION BY

MESSRS MAURICE P. VAN BUREN, WAYNE W. SMITH, 'LEONARD P.
ZICK Jr., anp» CONRAD C. WAN, S. D. LASH, DEAN F. PETERSON
* Jr, R. W. STEWART, JAROSLAV J. POLIVKA,. anp
BRUCE JOHNSTON axo EDWARD H: MOUNT.

Paper No. 21352
Reprinted from TRANSACTIONS, Vol. 107 (1942), p. 993 - -~




. —— A

AMERICAN SOCIETY OF CIVIL ENGINEERS
Founded November 5, 1852

TRANSACTIONS

Paper No. 2152

ANALYSfS OF BUILDING FRAMES WITH
SEMI-RIGID CONNECTIONS

BY BRUCE JOHNSTON,! Assoc. M. AM. Soc.-C. E., AND
' EDwARD H. MOUNT,? EsQ. )

Wita DiscussioN BY MEssrs. MAURICE P. vaN BureN, Wayne W. SmrtH,
Leonarp P. Zick, JR., aND CoNrap C. WaN, 8. D. LasH, DeEaN F. PETER-
soN, Jr., R. W. Stewarr, JarosLav J. PorLivka, AND Bruce JorNsTON

yaND Epwarp H. MounrT. '

SyNopsis . .

Methods applicable to the analysis of building frames with semi-rigid
riveted or welded connections between the beams and columns are presented
in this paper. The methods of analysis are too complex for ordinary design
use, but the writers have presented simple design procedures, based on- these
methods of analysis, elsewhere (2) (3),* and have made them expeditious by
the use of charts and diagrams. Such design methods effect permissible
economy in the required beam sizes, made possible by considering the partial
restraint afforded by standard or near standard connections, particularly-
riveted or welded connections of the top and seat angle type.

This paper also presents test results of a welded building frame that cor-
roborate the methods of analysis. A study of the effect of neglecting the
width of members in the analysis is presented. (“Member width” is used
in this paper to indicate column width or beam depth, as the frame is viewed
in elevation.) The essential features of the methods of analysis have been
presented elsewhere (1) (13) (14), and it is the intention of the writers to
modify them slightly so as to simplify the technique by conforming in every
way to the usual slope-deflection and moment-distribution procedures.

INTRODUCTION
The design'of the steel frames that form the skelefon of multiple-story
steel buildings is usually based upon certain simplifying assumptions, chief -
of which are: () For the purpose of beam design the beam-column connections
Note.—Published in March, 1941, Proceedings. -
1 Associate Director, Fritz Eng. Laboratory, Lehigh Univ., Bethlehem, Pa.

* Formerly Am. Welding Soc. Research Fellow at Fritz Eng. Laboratory, Lehigh Univ., Bethlehem, Pa..

A s 1\‘Iigmerals in parentheses, thus: (2) (3), refer to corresponding numbers in the Bibliography; see
ppendix.
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994 ’ BUILDING FRAMES

are assumed to be pin connections, or simple supports; (b) columns are designed
without attempting to evaluate the moments/introduced by frame action;
and (c) the beam-column connections are assumed to be rigid in calculatmg
stresses due to lateral or wind loads.

These ‘assumptions have afforded a means of rapid design calculation..
Riveted building frames constructed on the basis of these design assumptions
have proved to be safe and reliable, but there remains the possibility of achiev-
ing greater economy through the use of more nearly correct design assumptions.
According to the British investigations (1), an average saving in the weight of
beams of as much as 209, may be expected by taking advantage of the partial
end restraint of riveted beam-column’ connections. - Welded - construction,
with its inherent continuity, also makes similar saving in weight possible.

The basis for the application of more accurate design methods to frames
with semi-rigid connections has already been laid in Great Britain (1) and in
work of a parallel nature in the United States (2) (3) (4). The comparison
of analytical and experimental results presented in this paper was made
possible by the construction and test of a welded building frame with three
bays and two stories.” The beam-column connections used in this frame were
of a semi-rigid type previously studied at the Fritz Engineering Laboratory
(2) (5) in connection with research programs sponsored by the American
Welding Society. Similar tests on riveted building frames have been made
in Great Britain (1).

The slope-deflection and moment-distribution methods have as a8 common
purpose the.determination of the bending moments at the ends’of the individual
members of a statically indeterminate frame. Both methods in their usual
form are based on the assumption that the deformations of the frames are
caused entirely by bending of the members and that the relatlon between.

~ bending moment and distortion is given by the beam formula:

M dyy
m=-d;2 .................... e (1)

The derivation of the beam theory and the assumptions on which it is based
may be found in any text on the strength of materials.

In 1915 the slope-deflection method was applied in the United States (by
Wilbur M. Wilson and George A. Maney, Members, Am. Soe. C. E.) to the
analysis of wind stresses in tall buildings (6). A more complete treatment:
followed in 1918 (by Professor Wilson, with F. E. Richart and Camillo Weiss,
Members, Am. Soc. C. E.) (7), and in 1931 a modification (8) was introduced
by L. T. Evans, Assoc. M. Am. Soc. C. E., to take care of members with
varying moments of inertia. The method of moment distribution was first
presented -in mimeographed form by Hardy Cross, M. Am. Soc. C. E,, in
,1926 (9) (10) (12). Innumerable variations and short cuts have been applied
to the moment-distribution method and, although, some of these have merit,
the original method remains the outstanding development in recent times for
rapid and effective analysis of continuous frames. The application of both
the. slope-deflection and moment-distribution methods to the analysis of .
frames with semi-rigid connections was made by John F. Baker, Assoc. M.
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BUILDING FRAMES 995
Am. Soc. C. E. (13). The width of the members and the semi-rigid nature of
the connections are both taken into account, as it is found that the neglect
of member width gives rise to considerable error, particularly in the case of
analyses of frames with semi-rigid connections.

Anarysis oF FrameEs witH Sgmi-Ricip Joints

It will be assumed that the reader is already familiar with the usyal appli-
cation of the slope-deflection and moment-distribution methods, for which
references are readily available (12) (15) (16) (17). The methods herein
presented are identical in mode of application to the usual simple form, with
the exception that special coefficients must be used in the slope-deflection
equations and for the carry-over and distribution factors in the moment-
distribution method. The following method is identical with that previously
presented by Professor Baker (13) (14) when the width of member is neglected.
When the width of member is considered, the following method differs in two
respects from that of Professor Baker: (@) The interior of the joint between
connections is assumed infinitely rigid, whereas Professor Baker assumes it to
have the same stiffness as the beam; and (b) hypothetical moments are com-
puted at the joint centers by the usual slope-deflection and moment-distribution
procedures, whereas in Professor Baker’s method separate expressions are
given for the moment and shear at the connection, or column face, and are
dealt with separately.

The following assumptions apply both to the slope-deflection and to the
moment-distribution relations as herein presented: (a) Members are of uniform
cross section between their end connections; (b) the semi-rigid connection at
the end of a member behaves elastically as defined by the connection constant

v; and (c) the interior of the joint between connections is assumed to be’

infinitely rigid, although free to rotate as a rigid body.

The notation used is shown subsequently in Figs. 5 and 6. The hypo-
thetical moments and shears at the joint centers, when width of column is
considered, are designated by the bar above the letter M or V, thus; M and V.

The “Semi-Rigid”’ Connection.—The semi-rigid connection may be thought of
as a locally weakened section between the end of the beam and the face of the
column to which the connection is made. The effect on analysis is the inverse
of the effect produced by end haunches or added cover plates. The typical
test behavior of a riveted or welded connection of this type is shown in Fig. 1,
which presents the plot of the relationship between moment transmitted
through the connection and the angle change between the joint center and the
end of the beam. In the design range the relationship is assumed linear and
the inverse slope is termed the connection constant, v, thus:

¢ _ Angle change

7=M=m— ..... :.....' .......... (2)

The connection constant ¥ may be defined as “angle change for unit moment”
and may be determined experimentally by testing typical joints. The vertical

1

~
~
~



996 BUILDING FRAMES
line through the origin in Fig. 1 would indicate the behavior of a perfectly
fixed connection with v = 0, and the horizontal line would represent -the
behavior of a frictionless pin connection, in which case v = . TFig. 2(a)

. © S )
Sl Permissible o)
S Variation Ve
g ectio®
o>

xa

=5

T m

Minimum Behavior

Berding Moment, M, at Connection

Design Range

“Pin End" Behavior
M

Relative Angle Change, ¢, Between Column and End of Beam

¥ra. 1.—TyricaL M-¢ RELATION IN THE TEST OF A WELDED OR RIVETED Beam-CoLuMn CONNECTION
shows ‘the test setup for determining the connection constant at an interior

joint of a frame with beam-to-column-flange connections, and Fig. 2(b) shows
a similar setup to test the connection between a beam and an exterior column

w
1w
[ : AN
Seat Angle t
I Rotation Bars
41 ’ ‘_1 : FTOP Angle 4 (4] . B é{? 4n
28 8 2'gn 2gn e 28
7 3ron—s | 310m 7 3o : Iﬁl T 30—
4 i . 2 7 B i K3
(a) BEAM TO COLUMN FLANGE CONNECTION - (b} BEAM TO EXTERIOR COLUMN WEB CONNECTION

F1a. 2.—TEST ARRANGEMENT T0 DETERMINE CONNECTION CONSTANTS

web. These connections correspond to those used on two frames tested by
the writers. The relative rotation between the ends of the beam and the
center of the column at the joint were measured with a 20-in. level bar which
is shown in Fig. 3 in position for measurement of angle changes of the actual
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test frame. Fig. 4 is a graph within the test-design range of measured angle
change plotted against moment in typical joint tests corresponding to the

actual test frame.

Fia. 3.—Leven Bar Usep 1o MEASURE ROTATIONS

The Slope-Deflection Equations.—For any individual member of a frame,
the relation between its end moments, the angle changes at each end, and the
angle change of the member as a whole may be expressed by a pair of slope-
deflection equations. For the usually assumed case of uniform beam cross

0.006
I 3
(@  Column Flange Connection
———(2) Interior Column Web Connection +—— 0.004
(3@  Exterior Column Web Connection - /
———— Theoretical kS / @/’/
B —
o
T 0.002
Moment, in Kip-Inches S
§ @ 8 =4 g o o
I I ] % 0 g 2 N =
]
|
/7’/
===
—0.002
@ y /
,/(D(
-0.004

Fi1e. 4—Test Resvurs IN DesieN RANGE ForR TyricaL BeaM-CoLuMN CONNECTIONS
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section, and with rigid end connections, these equations are written: --
) Mip=2EK(264+6s —3R) — Mpag...........(30)

Mpa =2EK (265 +04 —3R) + Mepa........... (3b)

i

and

In Egs. 3, K = l£’ in which I = the moment of inertia and ! = the length of

the member (disfance between joint connections). The angle changes at ends

A and B are 94 and fp; and B = = = the angle change of the entire member

A being the relative lateral dlsplacements of ends A and-B. The fixed-end
moments for the lateral loads alone are Mzap and Mppa. The slope-deflection
equations may be derived directly -from Eq. 1 or by an application of the
moment-area principles.

. Slope-deflection equations such as Eqs. 3 may be derived by similar methods
for members which frame with semi-rigid connections. Fig. 5 shows the
notation used and the geometry of the general deflected curve of any such
member: Note especially Fig. 5(b), which shows the hypothetical moments at
the center of the joint. The slope-deflection equations corresponding to
-Eqgs. 3 for the hypothetical moments M4p and Mp4 at the joint centers for
any member A B, as shown in Fig. 5, may be written:

. o 1

Map = 1+2a+26+3aﬁ[2EK(CAA0A + Cap b — Cac R)
: — Faa Mpap — Fap Mrpa] — Vag' bap..... PP (4a)
and :
' Mpa= ! 52 F K(Cos 05 + C3a 04 ~ Cac R)

142a+284+ 3« ‘

+ Fpp Mppa + Fpa Mranl+ Vea'bpa............ (4b)
Except for the fact that new coefficients replace the even integer coefficients
in Eqs. 3, the application of Eqs. 4 to any particular problem is identical with

in Egs. 4.)

the usual slope-deflection procedure. (Note that B = %, not % ,

MAB

AV\ Mig . |
b ¥ I .
4 B U Yga M,
A Ba Vg4 v, 7
“ﬁL ] _"? Vas K‘”’ ap Mag N\
: /5

bAB ‘bBA MB!A ‘z
! - bas : ! ———bp"{Mpy
. - [ L
(a) SEMI-RIGID CONNECTIONS AND () DEFORMATION OF MEMBER WITH SEMI-RIGID
FINITE WIDTH OF MEMBER CONNECTIONS AND FINITE JOINT WIDTH

F1g. 5.—DEFORMATION '0F MEMBER CONSIDERING SEMI-R1cip CoNnecTioNs anop Finite JoINT WIDTH

In Eqgs. 4 the new constants Caa, Cap, Cac, Cge, CBa, Fa4, Fap, Fpa, and
Fgp depend on the dimensions of the members and on the value of the joint

constant. Factor K again is given by T and 1t should be noted that lis the

length between connections rather than the length between joint centers.
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The connection constants Y4 and g for the connections at the two ends
of the beam are introduced into new constants a and 8 by the relations (1):

and

The fixed-end moments for & member with fixed, rigidly connected, ends

" of span length ! are Mrap and Mgrpa; and Vap' and Vps’ are the shears or

reactions at the ends of a member with freely supported ends and span length 1.
The constants Caa, Cas, Cac, Faa, and Fap in Eq. 4a are given in Table 1

for four different cases. All four cases are for unsymmetrical conditions, the

firgt and the third considering semi-rigid connections, and the second and fourth
considering rigid connections. In cases I and II, a finite width of member is
considered; and, in cases III and IV, width is ignored. The values in case IV
are those commonly assumed—that is, frames with rigid joints and with width
of member neglected. In Eq. 4b the constants Czg, Csa, Cie, Fpp, and Fpyu
for Mpa are obtained from Cag, Cas, Cac, Faa, and F4p, respectively, by’
interchanging « and 8 and the subseripts A and B. It is noted that Cpy4 is

-equal to C4p. :

Eqs. 4 with the preceding coefficients are for moments at the joint centers

and therefore are used with exactly the same equilibrium conditions as in the

simpler form (2); namely, .
For joint equilibrium,

and, for étory equilibrium,

In Eq. 6b, & is the story height between neutral axes of two beams.

With Egs. 4 it is now possible to determine the hypothetical end moments
Map and Mpa at the joint centers. Moments and shears are assumed as
positive when they act on the ends of the beam with a clockwise sense, or act
on the joint with a counterclockwise sense. The hypothetical shears in the
joint are constant and equal to the actual shear at the connection. The shears
Vap and Vgpa may be calculated from the moments M4p and Mpa by the
following:

Vas = VAB=—<ML_—I*:—A-IL,A:>+ Vag' ..o . (7a)
and . .
Vpa = 734=—<M>— Vea'........ ... (7)

. : )
in which 745" and Vg4’ are the end shears in a member having span length L

with simply or freely supported ends. The moments at the connections, M 5

and Mpa, may now be calculated from the following:

Mag = Map+ Vagbap. ..o . . (8a)
and
Mpa

Mpa + _VBA DBA. . o o (8b)

~

—
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TABLE 1.—SLopE-DEFLECTION AND MOMENT-DISTRIBUTION CONSTANTS—NONSYMMETRICAL CASES

Case IV
Constant Case I—Nonsymmetrical, semi-rigid connections, finite width of members Case II._Nonsy’glﬁ'fg"é&’iI{h‘:gid connections, Ca::éﬂ;;ﬁ(:gg}ﬁ&lﬁ;:&l, ;»E:Eg
. ' zero width Otgvaix:ist'h
(a) SLore DEFLECTION
Can 2438460 +5) A2 43¢ +atp A g 4 8048, Bb4E 2438 2
Ca5 = Cpa 1+80 +a) 22 430 +8) 24 130 +a +p) A2 143040 3004 | 804BbEA 1
cns 2+3a+60 +a) 224 130 +a+p BE 2 + 8084 S0aL 243
Cac. ; B3U 48 +32+a+saE s + 9248 30 +8)
CcBe BU+a) +3(2 +at+p 2t 3 + 0284 30+
Faa 1426+ —a+26) 42 S 1+28
FaB ‘ﬂ+(ﬁ-—2a-—l)b—?—3 —I# B
Fsa 142a+0—8+20) 204 14224 1+2a
FBa a+(a—2ﬂ—'1)é?f .’—9% a .

(b) MoMENT DISTRIBUTION

M 54 p semi-fixed bAB [(1 +28) MRAB + 8 MRBA]

bAB baB p
1428+ 24281426 —0) | Mran+ |B-222(142a—p) | MrBa | baB
T Gome penter {0 L 3 +]2 [ Jateas) vvazoan|(1H770 ) Mran =28 Mena + Vanoan) 2R LA s
ST EEYT) : .
5 b baBD 5 )

r B carty-over 1430+ 2130 +p P 132 et p BB 143048 3084 | 0bABDEA ) .
factor between : bAB bAB 6048 , 6048 2138 z
J g 2+35+5(1+ﬂ)’l—'+3(2+a+3) T 2-{--——1—-—-i-.l2

. Y

Saran end rota- 2EK [2438+60+0 22 +3@ +a+8p %Y | 2px (24008 4 002 2EK (2.+36)

ion stiffness TToa 728 F3aF 1 iz 14+42a+28+3aB

v ap sideaway BEE ( 2taTéB ) BEEK SEK( EEEEZ I
stiffness - " \Tf%«+t28t3a8 ] #_ \iT2atepidab

B_IVAstidesws;y _6EK 1+a+’i‘;—"(2+a+ﬁ) _6EK(1+2bAB) _GEK( 148 )
end momen
at A | T ¥2aT26%3a8 l ! L \1+2e+28+3a8
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The slope-deflection equations are simplified when symmetrical conditions
of loading and structure exist with respect to any particular member. In
such a case o = 8. Turthermore, bap = bpa = b; Mrap = Mrps = Mg;
Vap = Vea' = Vag’ = Vs’ = V’; and the slope-deflection equations cor-
responding to case I of Table 1 may be reduced to:

_ 2EK [(2+3a  6b 60 ( 607,
MAB=1+3a[<1+a+z+,‘zT>9"+ T+ a +l+l2>03

6b MR +
_<3+T>R]—<1+a+Vb> ............. (9a)
and
_ 2EK 2+ 3a 6 b? 1 6b  6b
MBA=1+3a[<1+a+ +—->03+<1+ +—l——+-l2—>0.4

(48R (e va) -

For case II of Table 1, considering the semi-rigidity of the joints but neglecting
the width of the members, the equations for symmetrical conditions may be"
reduced to a simple form by letting =0 in Eqgs. 9; thus:’

Man = Man 2EK [<2+3a>0A

T1F3a|\T+a
. +<1_1Fa>03—33]—-1M%; ............... (10a)
and
Mss = Msa = f = [(214;3““) 65
n <ﬁ> 64 — 3 R] n lﬂ_f_ﬂa .............. (100)

A similar simplification may be made for case III of Table 1 by letting
a = 0 in Egs. 9, in which case the following equations result:

Man 2EK[<2+¥+912£2>04+<1+6TI)+‘6—22>03

- <3 + %’) R] — Me+ V). (11a)

and

I

4 ~2EK[<2+‘5T”+6I§’>03+<1+§l—b+6—l-’->04
6b ,
—<3+—Z->R]+(MR+V¢,) ............... (11d)
Moment Distribution Applied to Frames with Semi-Rigid Connections.—The

moment-distribution method serves identically the same purpose as the slope-
deflection method; that is, the moments at the ends of the individual members
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of & frame or continuous beam are determined. It will be assumed, as in the
case of the slope-deflection method, that the reader is familiar with the usual
moment distribution procedure. The procedure as applied to frames with
semi-rigid connections is identical with the usual method, although there are
differences in the numerical value of the carry-over, stiffness, and other factors.

The factors used in the moment-distribution procedure may be derived from
the slope-deflection equations or by use of the column analogy (11), as will be
deseribed herein. Fig. 6 shows the deforma.tmn conditions for determining

B B B T =
Mssp Msap A 2 3 4 Msga Mspa M,ii 64=1 95=0 2=0
\ { Mis {
v, Msap ' YMpy
- Mgs Mg,
1My 5
byp 4 - g ! boa
L | L |

- (@) SEMI-FIXED END MOMENTS . ()] MOMF::NT CARRY OVER AND ROTATION STIFFNESS

F1a. 6.—DEForMATION CONDITIONS UsED IN MOMENT DISTRIBUTION FOR MEMSBERS WiTH SEMI-RIcID
ConnEcTIONS AND FInrte JoiNt WipTe

semi-rigid end moments and the carry-over factor for moment distribution.
Table 1 gives the “semi-rigid” end moments, “carry-over” factor, rotation-
stiffness factors, sidesway-stiffness factors, and sidesway end moments for the
nonsymmetrical cases I, II, IIT, and IV. Table 2 presents the same factors
for the symmetrical cases I, IT, and III.

TABLE 2.—MoMENT DISTRIBUTION FOR SYMMETRICAL CASES
a=2p bap =bps = b, AND Mpa = Mrp = Mp

‘ Symmetrical case I, semi-rigid | Symmetrical ‘case II, Symmetrical case ITI,
Constant connections, finite width rigid connections, semi-rigid connectxons.
. of members finite member width | zero member width
M 34 B semi-fized-end ’ ’ Mr
moment at joint center 1 + + Vb Mr+V'b TTa
b2 6b , 6H
- 1+6 Q1 s+6(1 = ==+ == N
rAg carry-over tf“totre 6 ¢ +a) AL 1+7+3 1
etween joint centers b b
2+3at6 (ta)j+6+a) | 2 + 50 4+ 02 243«
S4B end rotation 2EK (2 t3a , 6b 602 ( 480 6__5’ 2+3a
stiffness ) 1432\ 14« Tt ) 2EX [ l ) 2EK 14+4a+3a?
B " . 12EK 12E K 12EK
8 ti e s
v AB sidesway stiffness ) B AU T3S
_ ' 1+22 6EK 2b 6EK
© MvaB sidesway end 6E K T —-————(1-{-——) _ . 8EK
moment at A T T \iF3a [} 1 (I +3a

All of the moment-distribution factors relate to hypothetical moments at
the centers of the joints, and the general procedure is therefore identical with
that used in the simple case. After the hypothetical moments at the joint
centers are obtained, the moments and shears at the connections result as
before from Eqs. 7 and 8.
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In applying the moment-distribution method to frame problems, sidesway

- may be induced either by lateral loads or by unsymmetrical conditions of

loading or frame arrangement. The simplest form of sidesway problem is one
involving only lateral loads applied to a one-story frame. The lateral load is
distributed to the columns in proportion to their “sidesway stiffness” Sy,
and semi-fixed or fixed-end moments are distributed to the ends of each column

in proportion to the ¥y moments for unit sidesway. The next step is the

usual moment distribution, but at the conclusion the summation of column
shears will not aceount for the total lateral force. 'All of the end moments are
then multiplied by a constant ratio sufficient to bring the shears into equi-
librium with the external lateral force. If the structure is more than one
story in height, the procedure is progressively more complicated. Shears are
distributed in any one story in proportion to their lateral or sidesway stiffness;

_ but in special cases in which two-story sections adjoin open auditoriums or

halls, the combined rigidities of the two stories of columns “in series”” must be
determined. The stiffness of a two-story group of columns “in series” is
given by:

Svap § ‘
Syape = —YABZVEC . ... e (120)

Svas + Svee

in which Syapc = sidesway stiffness of two columns or groups of columns “in
series.”” The combined rigidity of three tiers of columns “in series” is given by:

SVAB SVBC SVCD

SVABCD =

, e (120)
Svare Svee + Svee Svep + Svep Svas

The analysis of two-story and three-story problems of the foregoing type is
taken up in texts (12) (16) (17) and the procedure for frames with semi-rigid
joints follows exactly the same course. In applying these analytical methods
to the development of design methods for multi-storied buildings, under the
action of vertical'loads alone, it is reasonable to neglect the effect of sidesway.

Certain short cuts for special conditions may be used, provided that their
use in simpler forms of moment distribution is already familiar. For example,
if the end B of member A B is pin-connected, or freely supported, 8 becomes
equal to ©. The “semi-fixed”” end moment at A then becomes:
2bas

l
2+3a

. 2 +
MSAB=

Mgap +Va'bag............. (13)

In Eq. 13 Mgap is the fixed-end moment at A due to lateral loads in a beam
freely supported at B. The rotation stiffness, or distribution factor, for end
A of member A B with B freely supported is:

2EK

) - 6bAB 3bA’B2
SMAB—2+3a<3+ ] + 2 >...........(14a)

The sidesway stiffness factor for the same case, with one end freely supported,



1004 . BUILDING FRAMES

is as follows:
: 6 EK

SVAB = m .......... e

Cases II and III in Table 2 may be obtained from Egs. 13, 14a, and 14b by
letting @ and b4, respectively, be equal to zero.

Another type of special case occurs when the entire frame and loading upon
it are symmetrical. If the center line of the frame is on line with a column,
there will be no rotation of the column joints and the center line of the center
column may be assumed equivalent to a fixed wall. If there are an odd
number of panels, the center line of the frame will cut through the center of
the beams in the center bay. The rotation of the two ends of each beam in
the center panel will be equal in magnitude and opposite in sign. From this
condition it follows that the modified moment stiffness or ““distribution factor”
may be taken as: :

Syap =

for the ends of beams in the center panel. No carry-over is used in the center
panel when the modified stiffness factor is used. :

Application of the Column Analogy to Members with Semi-Rigid Connections.
—It will be assumed that the reader is familiar with the application of the
column analogy, originally developed by Professor Cross (11), to the deter-
mination of moment-distribution factors for beams with variable moments of

inertia. The width of the “analogous column” is equal to % , and the area

of ahy elemental length ds of the analogous column is therefore equal to Eds? .
From the fundamental relations of the bent beam,

o _ ds
’ D~ IR T

in which d¢ = the angle change in any elemental length of beam. At the

Area of Column=y |
at Connections ™ >} |

) |

, !
‘ 4 !
H v I
ﬁ 0 Width (Z Assumed Infinite) '|
|

i

|
|
|
i (by CROSS SECTION OF
i ANALOGOUS COLUMN

« - (a) BEAM WITH SEMI-
RIGID CONNECTIONS i

+
!
i
|
1
!
|
[
!
i

Fie. 7.—AppPLIcATION OF COLUMN ANALOGY TO BrAMS wiTH SeEMI-Ricip CONNECTIONS

particular location of the semi-rigid joint, from the definition of the “connection
constant,”
_dp_ ds

Hence, the localized area of the analogous column at the semi-rigid connection
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is equal to the connection constant y. Professor Cross (11) has shown that
the area of the analogous column at a pin connection is infinite, and in the
region of a completely rigid zone it is equal to zero. The semi-rigid connection
obviously is a case somewhere between these two extremes, and the column
analogy may readily be used to obtain the moment-distribution factors for a
member so connected. Fig. 7 illustrates a cross section through the analogous
column of a member with semi-rigid end connections.

ANALYsIS BY SLoPE-DEFLECTION METHOD

An illustrative example will be presenfed in detail to demonstrate the
application of both the slope-deflection and moment-distribution methods to
the analysis of a frame with semi-rigid joints, takinginto account the width of
the members.

The frame shown in Fig. 8 corresponds to one of the frames actually tested
(see Fig. 9), and the connection constant used in the analysis was obtained
experimentally from tests of a sample joint. All of the connections were
identically alike, and each beam, therefore, was individually symmetrical.
The results of the connection test gave an experimental value of v = 0.01775
X 1073 in inch-kip units. The stiffness of the frame members was measured
by bending tests preliminary to fabrication of the frame, and the quantity E I
was thus found to be 3,550 X 10% and 3,321 X 103 for the beams and columns,

‘respectively, in inch-kip units. The net length ! of the beams between con-'

nections was 168 in. — 8in. = 160 in. The columns are continuous, and the
beam connections were of the welded seat and top angle type. An approximate

-correction for column length may be shown to be one third of the beam depth

at each end that frames with a beam (see heading “Effect of Width of Member
Upon Analysis”). Hence, for the second-story columns, [ = 120 — 6.67
= 113.33 and, for the first-story columns, [ = 120 — 3.33 = 116.67. This
correction could well be omitted with but little error.

The constant « for the beams was

oo p—2EIY _2X3550 X 10° X 0.01775 X 10

] 160 = 0.7877.

The fixed-end moment for the loading shown is 221.0 in-kips.

Because of the individual symmetry of the beams, the slope-deflection
equations in the form of Egs. 9 were applicable. The typical equation for any
beam is written by substituting the values of @, E K, b, I, etc., in Eqgs. 9, which
for any loaded beam results in the following: '

P 2 X 3,550 {[<2+3xo.7877 L 6x4, 6 x4a]
4B = 160(1 + 3 X 0.7877) 1+ 0.7877 160 1607 |4

Z 1 6X4 6x4], 221.0
+-”'+[<17|—0.7877>+ 160 T 1607 ]03}'_ <T7‘8W+6'5X4>"(17)

The right-hand side of this and the following equations'has been divided
by 1,000 to give more convenient values of §. The moment M4p = 34.233 64
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+ 9.411 65 — 149.62; and similarly:
Mpa = 34233 65 + 9.411 604 4 149.62... ... e (18)

Equations of this type are written for all of the beams in a symmetrical half of
the frame, as follows:

Mis = 34.233 0, 4 9.411 0, )
Mz = 34.233 0. 1 9.411 8,
My = 34.233 6; + 9.411 6; — 14962 (— 8. = + 61)
= 24.822 0, — 149.62 ¢ (19)
Ms = 34.2336; +9.4110, — 14962 {77
M = 34.233 0, + 9.411 6; + 149.62
and - S
Mds = 24.822 0, ' (__ 0, = + 08);

\

SimiI;r equations for the column moments are written by making the proper

" substitutions in slope-deflection Eqgs. 11, as follows:

Mz = 127.865 6, + 69.257 6, 3
Ma = 127.865 9, + 69.257 0,
My = 127.865 6, + 69.257 6,
M = 127.865 6, + 69.257 0,. '
Mg = 123.910 6, , B =04 ... ... (20
M = 123.910 6, (85 = 0)
M = 61.8106; (65 = 0)
.and :
Me = 61.810 86, : 6 = 0)]

The sidesway is obviously zero because of symmetry, and the only unknowns
are the four angle changes 6,, 6, 03 and 6,. The necessary and sufficient
conditions for the solution are obtained by applying the joint equilibrium
equation ZM = 0 to the four joints 1, 2, 3, and 4:

M+ My3=0

My + Mo+ Moz =0

M31+M34+M35=0 ................ (21)
and

M43+ M42+ M48+ MAB = 0

Rewriting these equations in terms of the unknown 8's:

+ 162.098 6, + 9.4110. -+ 69.257 8; = 0
9.411 60, -+ 186.920 6, + 69.257 0, = + 149.620 ..(22)
+ 69.257 6, + 286.008 0; + 9.411 6, = + 149.620 '
+ 69.257 0: +  9.411 8; + 310.830 8, = — 149.620

- The solution of these four simultaneous equations may be made by systematic

elimination of unknowns (15) (16) or by a method of successive approximations
(15).‘ The following solution was obtained by the first method: 8, = — 0.33174;



1008

= $'1.09276; 0; =
1,000 times the actual values but will give the correct moments when substi-
tuted in the moment equations which previously had been divided by 1,000.
The actual moments at the connections may be found from the hypothetical

BUILDING FRAMES

+ 0.627935; and 8,

TABLE 3.—CoMPUTATION BY SLOPE

DerLECTION

Location, | Joint moment M v Connection

joint and from slope-de- by moment M

member flection equation Eqgs. 7 by Egs. 8
1-2 - 1.07 —0.198 — 1.86
2-1 4 34.29 —0.198 + 33.50
2-7 —122.49 +-6.500 — 96.49
3-4 —-135.12 - +46.531 —109.00
4-3 +130.06 —6.469 +104.18
4-8 — 18.46 — 18.46
1-3 + 1.07 —-0.515 - 0.65
3-1 -+ 57.31 ~0.515 -4 55.59
3-5 + 77.79 —1.000 + 74.46
5~3 -+ 38.82 -1.000 4 38.82
2-4 + 88.20 —0.607 + 86.18
4-2 — 19.44 —0.607 — 21.46
4-6 — 9215 +1.186 — 88.20
64 —~ 45.99 +1.186 — 45.99

Semi-Fized End Moment at Joint Center.—

— 0.74385. These values of 8 are

joint center moments by com-
puting the shears with Eqs. 7
and the connection “moments
with Eqgs. 8. An alternate
method would be to construct,
graphically, the simple beam
moment diagram for the full
lengths L upon the joint mo-
ment base line. The connec-
tion moments then could be
scaled off as the ordinate to the
moment diagram at the face of
the connecting member. Table
3 gives the results by the an-
alytical method.

ANavysis BY MoMENT DISTRIBUTION

The factors required in the moment-distribution procedure have been
presented in Tables 1 and 2. Some of the necessary computations in the
following have already been made under the heading “Analysis by Slope-
Deflection Method”:

MSAB

1 7877

+ 6 5 X 4 = 149.62 111—k1ps

Carry-Over. Factors Between Joint Centers.—
Beams (Both Directions).—

Tab = Tpa =

1+6 (L 7877)

160

42
+ 6 (1.7877) 60

2 + 3 (0.7877) + 6 (1.7877) —=

160

& = 0.275.

+ 6 (1.7877) 15

Second-Story Columns (Both ‘Directions).—

o

3.33

113.33

) o

3.33*
113.332

|

3.33

= 0.542.

113.33

)+

3.33:
113332/ .

First-'Story Columns (Top to Bottom) (See Table 1).—

r =

1+3<

3.33

116.67

;= 0.499.

reol

3.33

116.67

3.33
116.67

)+
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End Rotation Stiffness at Joint Centers.—
Beams (End Bay).—

_2(3,550) X 10° [2 4 3(0.7877) 4 ) ( g >]
¥ = 160 11 + 3 (07877 [ tagrr 1O <160 6\ fe0e

= 34.2 X 105,

Beams (Modified Stiffness in Center Bay Due to Symmetry Requiring
Analysis of Only One Half of Frame—Eq. 14¢).—

2 (3,550) X 10¢

- 2(3,550) X 10° 3
160 (1 F 0.7877) ~ 2+8 %10

Su

Second-Story Columns.—

_2(3,321) x 10° [ 3.33 333 \ | _ .
Su=—"q333 |2 T6 <113 33> +6 <113.332> | = 1279 X 10%
First-Story Columns (Upper End).—
_2(3,321) x 10¢ [ 3.33 > 3.33 > e \
Su=—"ger |26 <116 67) 76 <116 g7) | = 1239 X 10%

Proportional factors for distributing moments to ends of members are
given in Table 4. The distribution may be done either directly on a diagram

TABLE 4.—PROPORTIONAL FACTORS FOR DISTRIBUTING MOMENTS
10 ENDS OF MEMBERS

Jomnr 1 JoinT 2 Joint 3 Joint 4

End Distri- |10 em- End Distri-
rotation | bution ber |rotation bution
stiffness | factor stiffness | factor .

.| End | Distri- jpr | End  Distri-
rotation | bution || “} 8™ rotation | bution
stiffness | factor stiffness | factor

1-3 127.9 0.789 2-1 34.2 0.182 3-8 123.9 0.433 4-3 34.2 0.110
1-2 34.2 0.211 2-4 127.9 0.685 3-1 127.9 0.447 4-2 127.9 0.411
PR IO 2-7 24.8 0.133 34 34.2 0.120 4-8 24.8 0.080
..... 4-6 123.9 0.399

162.1 1.000 ver 186.9 1.000 e 286.0 1.000 e 310.8 1.000

Mem-

er ber

of the frame in the manner frequently followed or in tabular form. The
solution is herein presented in tabular form (see Fig. 10), through five cycles
after the initial distribution. Each cycle consists successively of: (a) The
carry-over of moments from the previously distributed moments; and (b)
the distribution of the new unbalanced moment at each joint to the ends of
the members. The final summation of moments may be compared with the
results of the solution by the slope-deflection method, and the results are seen
to check with a maximum error of two in the third significant figure, or a

fraction of 1%, except in the case of the smallest moment of 1.07 in-kips,
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when the error is about 2%,. The moments resulting from the distribution
procedure are hypothetical moments at the joint center, and the actual mo-
ments at the connection may be found by the method previously described.

Carry-Over Factor

~

1-3 1-2 2-1 2-4 2-7 =<—Location .
0789 0.211 0.182 0.685 0.133 «—Distribution Factors
0 0 0 0 —149.62 |« Semi-Rigid End Moments *
0 4] + 27.23|4102.49(+ 19.90|Distribution
-+36.52 [+ 7.49 0] — 3333 0 |Carry Over
—3451— 923 + 6.70{+ 22.83|+ 4.43|Distribution
+ 1.10{+ 167 - 254|-'13.47 0 Carry Over
- 2.19|- 058 + 291|+ 10.97[+ 2.13|Distribution
{4 498 |+ 0.80 - 016/~ 279 O  [Carry Over
— 456(- 1.22 + 054{+ 2.02{+ 0.39;Distribution
+ 038+ 015 - .034{— 147 0 Carry Over
- 042{- 0.11 + 033|4+ 1.24{+ 0.24 Distribution .
+ 0.64 |+ 0.09 — 0.03|- 025 0 |Carry Over
— 058~ 0.15 + 0.05|+ 0.19(+ 0.04|Distribution
+ 109 - 1.09 + 34.06 + 88.43 —122.49 Summation of Moments
o Sarry- N
R S Carry-Over Factor E Carry Over (Columns)
(=3 o
3-5 3-1 3.4 4.3 4.2 4-8 4.6 <Location
10433 0447 0.120 0.110 0411 0080 0.399 =Distribution Factors
0 0 -149.62 +149.62 (¢} [¢} 0 «—Semi-Rigid End Moments
+64.79 | +66.88 [+ 17.95 — 16.46|— 61.49|— 11.97| —59.70 { Distribution
o] 0 - 453 4+ 4.94|+ 55.55 0 1 o Carry Over
+ 1.96{4+ 2.03|+ 054 ~ 6.65|— 24.86|—~ 4.84| —24.14 |Distribution
0 -1870 |~ 1.83 + 0.15/+ 1237 "0 o] Carry Over
+ 8891+ 9:1814+ 246 — 1.38|— 515/~ 1.00]—~ 4.99|Distribution
0 - 1.19 |— 0.38 + 0.68{+ 595 0 0 Carry Over
+ 068i+4 070+ 0.19 ~ 0.73]— '2.72j— 0.53| — 2.65 |Distribution
0 — 247 {-. 020 + 0.05/+ 1.09 o] 0 |Carry Over
+ 1164+ 1.19|+ 0.32 — 0.13|— 047|— 0.09] ~ 0.45 {Distribution
0 - 023 (- 004 + 009+ 0.?7 [ 0 Carry Qver
+ 0.12| -+ 0.12 0.03 — 0.08— 0.32|— 0.06! — 0.30]Distribution
+77.60 +57.51 -135.11 +130.10 — 19.38 — 1849 ~92.23 Summation
(223 (=]
a @ Carry Over to
i . S| «— Fixed Bases.
. . (One Process)
5-3 6.4 - "
oments at
+38.72 ' =46.02| colymn Bases
Fra. 10.—SoLuTioN BY MOMENT DIsTRIBUTION N

‘ SIDESWAY INDUCED BY UNSYMMETRICAL VERTICAL LoaDs

The writers have analyzed the frame shown in Fig. 11 by both slope deflec-
tion and moment distribution in order to study the effect of neglecting sidesway
as induced by unsymmetrical vertical loads. Space does not permit the details
of the analysis, which follows usual procedures, however. The dimensions of
the frame and size of members are shown in Fig. 11 and the beam a b is assumed
to carry a uniformly distributed load of one kip per foot. As in the previous
case, it was assumed that the columns were fixed at the base, but the beam-
column connections were assumed to have “509, rigidity,” which corresponds
to @« = 1. The results are presented in Table 5.

Although no general conclusions should be drawn from this single case, it
is.seen that in Table 5 sidesway could have been neglected without great
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1 Kip per Foot

12" Beam @ 165 Lb "!
1-1063

o

N 6''X 6" WF @ 15.5 Lb)|

T

R 18'o" 18' 0" =i

Fra. 11.—UnsymmprrIcALLY LoApED FRAMB

error in the end moments. Sidesway due to vertical loads usually will be less
in frames with semi-rigid connections as compared -with the same frames
rigidly connected, and will be further decreased in the actual structure by
walls and concrete incasement.

TaBLE 5.—SiDESWAY INDUCED BY UNSYMMETRICAL VERTICAL LOADS

By MomeNT DISTRIBUTION CoNNECTION MOMENTS
Joint
Moment By slope deflection:

n‘:’gg_ Mgmen:s Sidesway | at joint Moment at joint center by | . Shear Moment
ber | Minm moment center, slope-deflection method 2| atend of | at face of
repleoting | t© bﬁzlance cor}'ected - meénber connecting
sidesway shear sideg:v ay by Eqs. 7 { member

ad +119.02 — 6.74 +112.28 +112.32 4 —1.34 +106.96
da + 59.32 —10.53 + 48.79 + 48.80 0 —1.34 + 48.80
abd —~119.02 + 6.74 —112.28 -112.32 3 +4-8.59 — 86.52
ba +141.71 + 5.10 +146.81 -+146.85 3 -8.91 +120.12
be — 88.61 -10.20 — 98.81 — 98.88 4 +1.29 — 93.72
ed — 44.16 -12.25 — 56.41 — 56.42 0 +1.29 — 51.26
be — 53.10 4 5.10 — 48.00 — 47.97. 3 +0.23 — 47.28
ch - 7.63 + 6.74 - 0.89 - 0.89 3 -+0.23 - 0.20
cf + 7.63 — 8.74 + 0.89 + 0.89 4 +4-0.05 +. 1.09
Je 4+ 3.80 —10.53 - 6.73 - 8.72 0 +0.05 - 6.52

ErrecT oF WipTH oF MEMBER UPON ANALYSIS

In the analysis of frames, the length of each member is often assumed to be
equal to the distance center-to-center of joints. The moments thus computed
at the joint centers will usually be higher than the actual moment at the con-
nection at the end of the member. This method of computation is usually on
the safe side in determining end-connection moments but generally will be on
the unsafe side in determining the max1mum positive moment near the center

-of the beam.

An approximate correction is sometimes made for the effect of member
width. The end moments computed in the foregoing manner are used to
construct the moment diagram. The actual end-connection moment to be
used in design is then taken as the ordinate to the moment diagram at the face
of the column or connecting member. This method usually gives values of
end-connection moments that are too low.

The error by either of the foregoing methods becomes greater as the ratio
between the width of the joint and the length of the member increases. The
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average errors are also greater for frames with semi-rigid connections than for
. -frames with rigid connections.

In order to develop criteria to determine when, and when not, to consider
member width in analysis, the behavior of the frame shown in Fig. 12 was
studied for various ratios of joint width to member length. The'load was
assumed to act uniformly on beams 1-2 and 8-4, and the analyses were made
1 1
1279

and (—13 . Analyses also were made neglecting member width entirely, and the

for four different ratios of joint width to member length—namely, Ilg’

method of arbitrary correction previously outlined was tried also. The

T, H]Im]_ﬂlHIII]I'IHHHHHI -
1 2
TN
3 4 > lf
\ ’ s
6 . 7 . 8 :
\ T 7 % L \\ ST, V7
Fra. 12

analyses were made both for a frame with rigid connections and for a frame
with continuous columns but with semi-rigid beam-to-column connections.
All of the analyses were made by the method of moment distribution.

Special note should be made of the length of the columns in relation to beam
depth. The methods herein presented to take account of width of joint are
based on the assumption that the interior of the joint may be considered in-
finitely rigid in comparison with the bending stiffness of the member. In the
case of a beam framing into a column, this assumption seems reasonable, par-
ticularly if the column runs through the joint without a splice. In the case of
the continuous column, however, the connection moments are introduced by
concentrated lateral forces acting at the top and bottom of the beam in the
type of connection shown in Fig. 2(b). In such a case it may be shown that
nearly correct results may be obtained for the moments in the.column by
assuming a length correction for the column of one third the beam depth at
each end instead of one half-the beam depth. This correction was made in the
analyses under consideration and was found to give good results in .actual
frame tests. T

The results of these studies are shown in Fig. 13 for the frames with rigid
and seini-rigid connections, respectively. The solid lines give the percentage of
error of moments determined with a neglect of joint-width as compared with




-~

BUILDING FRAMES 1013

corresponding moments correctly computed at the face of the joint. The
broken lines give the percentage of error resulting from the arbitrary correction
for joint width by neglecting it in the analysis but usmg the ordinate of the
moment diagram at the face of the joint.

It is noted in Fig. 13 that the maximum percentage of error occurs in the
case of the large end moments in the loaded beams at joints 1 and 4. It also
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'F1a. 13.—PercENTAGE OF ERROR IN CONNECTION MOMENT, NEGLECTING MEMBER WIDTH

may be seen that the errors are usually larger in the frame with semi-rigid con-
nections than in the frame with rigid connections. The errors are appreciable
even for low ratios of joint width to beam length. In the case of a one-to-
twenty ratio, for example, the error may be as high as 209, with the average
" error about 5% for the rigid frame and as high as 25%, and with an average
error close to 109, for the frame with semi-rigid connections. As the ratio of
joint width to beam length increases, the errors become increasingly larger.
A fairly close approximation for the moment at the connection is obtained
by neglecting joint width in the analysis and using, as the connection moment,
the moment halfway between the connection and joint center.

CoMPARISON BETWEEN THEORETICAL ANALYSES AND TEST RESULTS

In order to compare the results of analyses with the actual behavior of
building frames, two full-size, all-welded, model building frames were con-
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structed. Details of these tests have already been presented in another paper
by the writers (2). _ ‘

Frame No. 1 was made with beam-to-column flange connections, whereas
frame No. 2 had beam-to-column web connections. The general dimensions
and size of members of frame No. 1 are shown in Fig. 8 in connection with the
illustrative example (see heading ‘“‘Analysis by Slope-Deflection Method”),
and a photograph of the.same frame is shown in Fig. 9. The beam-to-column
connection used in these frames consisted of welded seat and top angles, the
details and semi-rigid properties of which have been described elsewhere (2).
Vertical loads were applied to the frames by means of water tanks, which are
shown in Fig. 9 in one of the loading positions. Each frame was braced later-
ally near each joint by means of flexible ties welded between columns of the
frame and columns of the laboratory. These ties had reduced sections near
each end that allowed the frame full freedom to bend or move laterally in its
own plane but that prevented movement out of its own plane.

The computation of the moments developed during tests of the frames was
made by measuring the rotation at the ends of each beam and at the joint
centers by means of the 20-in. level batr which was illustrated in Fig. 3. Then
the moments at the end of each beam and column could be calculated by the
slope-deflection equations (see Eqs. 3).

"The connection constants for typical joints in the frame were determined
by means of the setup shown in Fig. 2(). The experimentally determined
values of these connection constants, as determined by Fig. 4, have been used
in the'theoretical analyses. The method of moment distribution was used and
a typical analysis, taking account of the width of member, has been presented
in the illustrative example.

Fig. 14 shows both the computed and experimentally determined moments
for several of the critical conditions of load that were applied to the two frames.
Fig. 14(a) shows moment diagrams for frame No. 1 with only first-floor beam

loaded. Fig. 14(b) is for frame No. 1 with unsymmetrical loading in which
" only one outside second-story beam was loaded. Sidesway was neglected
in the analysis but the agreement between analysis and experimental result is
excellent. A cémparison is made in this case with an analysis assuming com-
pletely rigid joints. The actual test results agree well with the analysis for
semi-rigid joints but are widely divergent from the analysis for rigid points.
It should be noted that the moments ‘“taper out’” much more rapidly in a
frame with semi-rigid connections than in one with rigid joints. Fig. 14(c)
is for a critical condition of loading. In applying the test load for this case,
the order of loading was purposely unbalanced but the moments by test are
in fairly good agreement with the theoretical analysis. Fig. 14(d) is for frame
No. 2, with beam-to-column web connections, and is for the same critical
loading condition as Fig. 14(c). The outside column connections in frame No. 2
has less rigidity than the inside, and this was taken into account in the analysis.
The analysis based on the assumption that the outside joints are as rigid as

5
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the interior joints is also given, and it is seen that the test results usually fall
between the two different analyses.

In general, the test results agree well with the methods of analysis which
have been presented. The results also show that the test of a single joint to
determine the connection constant gives a satisfactory measure of the behavior
of the same type of joint used in an actual frame.

TeE DEsieN oF FraMEs FOR Parriar Rieiprty

The methods of analysis which have been presented in this paper obviously
are not directly applicable to design. Any method of statically indeterminate
analysis requires an assumed structure as a preliminary to design. To assume
a building design, and then to analyze such a highly redundant structure by
the methods that have been presented, would be an 1mpractlcal de51gn pro-
cedure, warranted only for very special problems.

For routine building design, a suitable method must be direct and simple
in application. Such design methods have been presented by the writers in
conjunction with a particular type of all-welded, beam-to-column connection
(2), and in a more general article covering the application to any semi-rigidly
connected structure (3). The British Steel Structures Research Committee
(1) has developed design procedures for frames with semi-rigid riveted con-
nections. In a letter dated December 26, 1940, S. D. Lash, secretary of the
Subcommittee on Steel Construction, National Building Code, National
Research Council of Canada, stated that simplifications in the original design
method have been made in Great Britain and that similar steps are in progress
in Canada.

The design procedure for the beams in welded building frames with semi-
rigid connections that has been developed by the writers (2) may be outlined
as follows:

1. The beams are designed by the usual procedure of computing the
required section modulus for maximum simple beam moment.

2. The section modulus for maximum simple beam moment is multiplied
by a reduction factor that depends on the distribution of load and relative
stiffness of the simple beam and adjacent column sections. This reduction
factor is obtained from a graph or simple formula and is based on the most
critical combination of load possible.

3. The final beam selection is determmed by the reduced section modulus
found by step 2.

Although the method was developed for designing beams with welded con-
nections, it is applicable to any frame having connectlons with the desired
semi-rigid properties.

In computing the reduction factor, the stiffening effect of adjacent beams
was neglected, and the same formula applies to exterior and interior bays. .
By this procedure, with end connections designed for 509, end restraint, an
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average saving in the weight of beams of between 15% and 20% was found
possible. If greater refinement and complexity are introduced into the design

procedure, the average saving in weight of beams might be raised to more
than 209%,.

CONCLUSION

The methods presented and corroborated by test in this paper represent a
refinement in the analysis of building frames. It may be questioned whether
such refinement is warranted. The concrete encasement of beams, columns,
walls, and partitions, and the uncertainties of applied load, all represent
indeterminate quantities which, undoubtedly, may have as great, or greater,
effect upon frame behavior as does the semi-rigidity of the bare steel connection.
Nevertheless, discounting these uncertainties as assets that cannot be counted
upon definitely, there remains the certain dependable bare connection end-
restraint. This influence can be determined and applied to the development
of improved and more economical methods of design.
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DISCUSSION

-

Maurice P. vaN Buren,* Assoc. M. Am. Soc. C. E. (by letter).—A
“basis for effecting valuable economies in certain types of structures is afforded
by this interesting paper. However, one important correction to the analysis
should be made. In comparing the moments at the face and at the center of
a joint, consideration must be given to the reaction as a load on the structure.
It does not appear that this has been included in the examples given. It can
be provided for easily by the addition of a term to both Eq. 4a and Eq. 45.
At the point of inflection of the column, the reaction is uniformly distributed,
and will cause a moment about the joint center of ¥V g b, in which g b is the
distance from the joint center to the centroid of the half column, This moment
is of opposite sense to the moments V b, and the last terms of Eqs. 4a and 4b
will then read: — Vap’ (1 — g) bap and Vga’ (1 — g) bgpa, respectively. The
significance of this effect is apparent in the case of the flanged column illustrated
in Fig: 5(a), for which g approaches 1, and the term involving V practically
vanishes. . The authors’ comments on the extent to which final results will
be affected is awaited with interest.

Wayne W. Smith,® LEoNARD P. Zick, JR.,* Juniors, Am. Soc. C. E., AND
Congap C. Wan,” Esq. (by letter).—As the authors have shown, there are
reasonable possibilities for a more economical design of frame construction by
considering the semi-rigidity of connections. As they have stated, their
method, in practice, is too cumbersome to be used directly. Their suggested
procedure using simple beam moments and reduction constants thus appears
to be the most practical method of design. However, it should be emphasized
that every continuous structure or frame is an individual problem and should
be dealt with as such. Graphs, charts, and simple formulas may be used to
simplify certain designs, but a thorough knowledge of their limitations must
guide their use. : )

According to the authors’ test results, the maximum moment developed
was about 274 kip-in. (Fig. 14(d)). For the 10-in., 25.4-1b, I-beam used, this
meant that a stress of 11 kips per sq in. was developed, a stress considerably
below the elastic limit of steel. The use of the connection constant vy seems
quite proper within the “design range,” but as seen in Fig. 15 the constant
changes rapidly. beyond this range. This design range is not clearly specified
in the paper. Making the logical assumption that the design range is one haif
the elastic limit, there is an-“overload range’” for which v is no longer constant.
Failure should not oceur until the elastic limit is reached, which limit is the
farther boundary of this overload range. Realizing that the maximum moment
does not necessarily occur at the joint, the question arises as to how important
is the discrepancy due to assuming v constant when the member is stressed

4 Cons. Engr. (J. Di Stasio & Co.), New York, N. Y.

s Lawndale, Calif.

8 Eng. Draftsman, Chicago Bridge & Iron Co., Chicago, M.

7 Graduate Student, Illinois Inst. of Technology, Chicago, 1L
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nearly to the elastic limit. To ignore this point may reduce the factor of
safety for the member. to
It seems that the authors’ suggestion of neglecting the sidesway moments
due to vertical unsymmetrical loadings is contradictory to the degree of re-
finement in their analysis. As ' .

shown in Table 5, the sides-
way moments range from 6.74
to —12.25 kip-in., which, in
the latter case, amounts to a z‘@*:f;}(‘ —
decrease of about 29%. RPN
In the comparison by the ¢ B
method of moment distribution %
of a rigid structure and a semi- §| _ )
rigid structure, it is very inter- ={g! ch
esting to notice the changes in =|:x g%"
‘the carry-over factors and the &8 82
end rotation stiffness (distribu- 2| © b
tion factor). £ % -
The solutions in Table 6 are g &
for the test frame shown in g"
Fig. 8 assuming rigid connec- s
tions and neglecting joint width.
The authors’ results are taken

from Fig. 10. As shown, the
carry-over factor for the beams
was decreased from the usual _
value of 0.5 to 0.275. Since the case of the semi-rigid beam is the opposite
of the haunched beam, the results are as expected. The changes in the carry-

Relative Angle Change, o
Fic, 15

TABLE 6.—CoMPARISON OF MOMENTS AND STIFFNESS FACTORS FOR RiGID
aNp SEMI-Rieip CoNpiTiONSs

JoiNT MoMENT CARRY-OVER Facror DisTriBUTION FACTOR
Mem-
ber
Authors 100% fixed Authors 1009, fixed Authors 1009, fized

1-2 -1.09 7 0.275 0.500 0.211 0.443
1-3 1.09 -7 0.542 0.500 0.789 0.557
2-1 34,06 93 0.275 0.500 0.182 0.362
2-4 88.43 91 0.542 0.500 0.685 0.456
2-7 —~122.49 —18 | ... L] 0,133 0.182
3-1 57.51 83 0.542 0.500 0.447 0.358
3-4 —135.11 —187 0.275 0.500 0.120 0.284
3-5 77.60 104 0.449 0.500 0.433 0.358
4-2 —-19.38 —40 0.542 0.500 0.411 0.313
4-3 130.10 198 0.275 0.500 0.110 0.249
4-6 —02.23 —-113 0.449 0.500 0.399 0.313
4-8 —18.49 —-45 | ... | ... 0.080 0.125
5-3 38.72 52 0.449 0.500 | ..... | el
6-4 —46.02 —56 0.449 0500 )} ... ] L.l

over factors for the columns are due to the consideration of the joint width
only. The results given in Table 6 for the analysis with joints 1009, rigid
is merely additional information. The authors have already shown the large
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disagreement considering 1009, rigid connections (see heading ‘“Comparison
Between Theoretical Analysis and Test Results’). '

The authors are to be commended for the close agreement between the
theoretical and experimental results that they obtained. Also, in their con-
sideration of the joint width, their results showed that for large ratios of the
joint width to the member length some adjustment should be made.

S. D. Lasn,® Esq. (by letter).—It is gratifying to find that attention is
being directed toward problems connected with the design of beams in steel
building frames. The fact that considerable economies are possible without
change in construction procedure makes it the more surprising that this sub-
ject has been comparatively neglected by practising engineers.

The authors do not claim that the methods presented by them are su1tab1e
for the practical design of beams in steel building frames. However, since the
methods of analysis are presented as a basis for simpler design procedures, it
appears legitimate to consider the paper from the point of view of design rather
than analysis.

The calculation of end moments in beams with semi-rigid connections dlffers
from most other design calculations, inasmuch as it is necessary to rely upon
the results of laboratory tests for the properties of the connections. Many
investigators have assumed that the relation between applied moment and
angular deformation for any semi-rigid connection is approximately linear,
since this assumption is the obvious way of introducing modifications of regular
design procedures. The laboratory investigations referred to by the authors
have shown, however, that such an assumption is incorrect for most types of
semi-rigid connections. The relation between moment and angular deforma-
tion is not linear, and the behavior of a connection on first loading differs con-
siderably from its behavior on subsequent reloadings. In an experiment on a
steel frame, if the loads are applied, removed, and reapplied, measurements of
strains being taken on the reloading, these strains will depend upon the reload-
ing curves for the connections, but the total strains will be those corresponding
to the initial loading curves.

Since moment-angle curves for semi-rigid connections are not linear, it
would appear to be necessary to introduce some form of “limit design” when
determining allowable restraining moments. Thus, for example, if a factor of
. safety, or load factor, of n is desired, the allowable restraining moment at

working load should be % times the computed restraining moment at n times

the working load. ,

It should also be pointed out that the “connection constant y,” referred to
by the authors, depends not only upon the type of connection, but also, in the
case of flange-angle connections, at least, upon the depth of the beam. The
constant as determined experimentally cannot be used for beams of a depth
other than that used in the original tests unless suitable corrections are made.

In order to make the foregoing points more specific, Fig. 16 has been pre-
pared using information previously published by the Steel Structures Research

§ Acting Secretary, National Building Code, National Research Council of Canada, Ottawa, Canada.
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Committee in Great Britain.” Curve (1) represents the moment-angle rela-
tionship for 4-in. by 4-in. by %-in. flange-angle connections on a beam of 12-in.
depth. Actually, this curve defines a lower limit obtained by combining the

curves resulting from tests on seven riveted specimens submitted by different
fabricators.
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For simplicity it will be assumed that a beam is attached to completely
rigid columns. In such a case for symmetrical loading, the end moment may
be conveniently determined by solving the equations graphically:

» M—f@).. i (23)
representing the curve of the connection ; and
M=Mrp—2EKé¢.......cccovvvvnn.. (24)

representing the slope—deﬁectlon equation.

In Fig. 16 two lines, (2) and (3), are drawn correspondmg to slope-deflection
equations for two different magnitudes of load applied to a 12-in. beam 20 ft
long. Line (2) corresponds approximately to a working load and line (3) to a
load twice as great. In the first instance the end moment is 308 kip-in. and in
the second, 380 kip-in. Thus, for a load factor of two, the allowable moment

9 Final Report Steel Structures Research Committee, Dept. of Scientific and Industrial Research of
Great Britain, H. M. Stationery Office, London, p. 282,
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at working load should be 190 as indicated by line (5) instead of 308 kip-in.
This diagram will also serve to indicate that the working range of the curve for
a connection is actually quite extensive. For case shown it will extend at
working loads from-angular deformations of about 0.002 radians up to 0.12
radians and, if overload is being considered, up to twice these values. For
this reason it is desirable to take experimental readings over a somewhat greater
range than has usually been done in the past.

Fig. 16 also shows, approximately, the effect of depth of beam upon the
moment-angle relationship obtained. The moment-angle curve (1) shown is
based on tests using 12-in. beams. If 24-in. beams had been used in these tests,
1t is probable that the curve would have been similar to that shown by curve
(4). If it is desired to present the properties of connections without relation
to depth of beam, a convenient way of doing so is to transform the ordinates
and abscissas from M and ¢ to %’ and ¢ D, respectively. The ratio —% may
be thought of as the pull on the connection and ¢ D as its linear deformation.
. The application of this method to web connections has not been investigated.

In frames having semi-rigid beam connections, the most reasonable approach
to the problem of making allowance for width of members appears to be to
assume that the columns are continuous members to which the beams are at-
tached. After all, this is what actually occurs. It then appears logical to
assume the effective length of a column as the length measured between the
neutral axes of the beams, and the effective length of a beam as the length
measured between the faces of the columns.

In the case of flange-angle connections particularly, this method leads to
an overestimate of column moments, since the loads are transmitted to the
columns by the connection angles as concentrated loads and not as moments
- at the neutral axes of the beams. No appreciable error will be introduced.by
assuming the maximum,moment in the column to be the moment at the esti-
mated level of the point of contraflexure of the flange angle connected to it.
Although this correction may be worth making from the point of view of the
design of the column, it is doubtful if it is worth making when considering the
distribution of moments throughout a framework, since an appreciable rotation
of the end of the beam may result from local shear deformation of the column
in the vicinity of the connection. Results published elsewhere? have shown
that this deformation may increase the total rotation of the column at the level
of the beam by 309, or 40%.

The National Research Council of Canada has recently pubhshed Part 3
(Engineering Requirements) of the National Building Code (a model code for
the use of Canadian municipalities). = In this Code an attempt has been made
to give some weight to the considerations mentioned by the authors at the
beginning of their paper. In particular, it is required that bending moments
in columns other than those supporting a symmetrical arrangement of beams
of approximately equal span shall be investigated, and the stresses resulting
from them shall be provided for, With this mandatory requirement is a

-+ 10 Final Report Bteel Structures Research Committee, Dept. of Scientific and Industrial Research of
Great Britain, H. M. Stationery Office, London, p. 357. .
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permissive requirement stating that “where a beam is restrained at either end
due allowance may be made for such restraint.” The Code does not restrict
the designer to any particular method for estimating moments in columns or
restraining moments in beams, but acceptable methods of doing these things
are given as Appendixes. A description of the method given for computing
allowable end moments was published in 1941.1 '

Dean ¥. PeETersoN, Jr.,'2 Assoc. M. Am. Soc. C. E. (by letter).—The
methods presented by the authors have made an excellent rational start toward
a better basic understanding of what actually occurs in a loaded frame in which
the members are connected in the customary way. Expressing the laboratory-
determined “‘stiffness’” of the connection in terms of the “‘stiffness’” of the
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1 “The Design of Beams in Steel Frame Buildings,” N. R. C. 992, National Research Council of
Canada, 1941,

12 Agst, Engr., Sanderson Porter, Pine Bluff, Ark.
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connecting member “‘opens the door” for the application of the “moment-
distribution” and ‘‘slope-deflection’” methods. The writer believes, however,
that the most direct and simple method for solving such an elastically complex
structure as a building frame with semi-rigid connections is the “flexure factor”
method.® Using this method it is unnecessary to solve either simultaneous
equations or to make the rather involved adjustments of the “moment-distri-
bution’ method. Since no mention is made of the application of the “flexure
factor”. method, either in the text or in the references given, it may add to the
cbmpleteness of the discussion to call attention to it. .

- ‘To illustrate the application of this method the writer has chosen -the
31mple frame of Fig. 17(a). The “stiffness” of any member-is the moment
required at one end, with the other end freely supported, to produce an angle
change of unity in the direction of the end tangents. In Fig. 17(b) the pro-

portionate stiffnesses of the members are determined from the éll 7 -diagrams.

Fig. 17(c) is the traverse of the elastic curve due to an unbalanced moment of
100 at Point B and Fig. 17(d) is the resulting moment diagram. For a vertical
load of 10 kips at a point 9 ft from Point B the “fixed-end’’ moment at Point B,
by the.“moment-area” method or by Eq. 13, is 13.86 kip-ft and Mzc = Mpa
= (0.8020)(13.86) = 11.15 kip-ft. The writer was able to check this value by
means of Egs. 4.

The writer doubts that the effect of sidesway should be generally ignored.
If sidesway were allowed in his example Mp4 would be decreased from + 11.15
kip-ft to + 6.54 kip-ft, and M4p would change from + 5.55 kip-ft to — 6.54
kip-ft. What would be true, however, of such buildings as powerhouses or
low warehouses would probably not be so true of a multi-story office building.

The authors are to be complimented on an excellent research project.
Perhaps the time will come when the designer will be able to predict to a
reasonable extent what the value of ¥ will be for a certain connection, or, better

. still, be able to design a connection for a predetermined value of .

-

R. W. StEwart,* M. Am. Soc. C. E. (by letter).—Considerable effort
has been made by the authors to overcome the complexities which result when
the effect of semi-rigid connections is incorporated into the computation of the
bending moments in a steel frame.

Each of the methods presented has defects which render its use difficult.
This may account for the authors’ statement that the methods of analysis are
too complex for ordinary, design use, but can be made expeditious by the use of
charts and diagrams in connection with simpler design procedures. It may also
account for the fact that the general case, which would occur if an unsym-
metrical beam having variable moment of inertia were used between the riveted
joints, was not included in the scope of the paper.

A specific list of the defects in the authors’ solutions is as follows:

(1) The constants used in end-moment distribution, which are based on the

13 “Relative Flexure Factors for Analyzmg Continuous Structures,” by Ralph W. Sbewart, Transactwna.
Am. Soc. C. E., Vol. 104 (1939), p.
1 Engr “of Bridge and Structural Desxgn City of Los Angeles, Los Angelee Calif.
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moment required to produce unit rotation at one end of a beam when the other
end is fixed, require long series of algebraic terms to express their values if a
member is affected by asymmetry or other special conditions like the yielding
joints treated by the authors. A glance at the right-hand column and then at
the left column (Case I) of Table 1 will disclose how the expressions for mo-
ment-distribution constants expand when conditions other than the simplest
are introduced. If these constants were further encumbered by unsymmetrical
tapering members between the riveted joints, the computation of « and 8
would become complex, making the use of the formula very tedious and
difficult.

(2) The slope deflection equations (4a and 4b) are based on K = TI-values

which are applicable only to members of uniform section between joints. The
introduction of unsymmetrical tapering members would add substantially to
the difficulty of computing the necessary constants.

(3) The use of the authors’ methods independently of a set of charts per-
taining thereto would require having at hand, for reference, formulas that are
too complicated to remember.

(4) The authors’ methods offer no easy facility for detecting errors which
may oceur in computations.

The following solution of Fig. 11 entirely eliminates defect 3 attributed to
the authors’ methods, as any one familiar with this method of attack would
not use any references to solve any of the authors’ problems, except a steel
handbook giving the moments of inertia of rolled beams. It greatly alleviates
defect 4 in that an automatic check involving a single setting of a slide rule
will verify a large portion of the solution. It alleviates to a considerable-
degree defects 1 and 2 by using “illustrated”’ member constants which are
simpler than moment-distribution constants and which can be altered without
difficulty to include the general case of unsymmetrical members between joints.

Fig. 18(a) represents an —]lli-diagram due to a moment at one end of a beam

shown in Fig. 11, the other end being hinged. It requires no explanation;
Tig. 18(b) is the appurtenant graph of the tangents to the elastic curves in the
beam, known as a traverse of the elastic curves, in which A represents the
curvature between joints. “To evaluate ¢, which represents the angle of yield
at a joint, Bqs. 2 and 5 yield

@=2BES ... 25)
For the flexure of a beam of constant section, hinged at one end, A = 511;4—1(‘

For @ = 1 (which is the condition for Fig. 11), by solving each of these equa-
tions for M, it is found that ¢ = A for the case in which A is the curvature re-

presented by a triangular JlI-—l-diagra.m. For Fig. 18(b), ¢ will equal the area of .

the %-diagram under the dotted line in Fig. 18(a). With this explanation and
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the traverse principle!® that in traverse triangles the lengths of the sides (con-
sidered as their horizontal projections since altitudes are negligible) are pro-
portional to the opposite angles, Fig. 18(b) can be readily sketched and
evaluated. The difference between Figs. 18(a) and 18(b) is of interest. Fig.
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-18(e) is a moment-area diagram that cannot show joint yield angles or joint
rotation angles. Fig. 18(d) is a traverse diagram that shows all the elements
of the flexure. The moment-distribution constants in Table 1 are necessarily
based on flexure due to the existence of moments at both ends of a beam which
is-why they become more complicated for unsymmetrical conditions than Fig.
18(b) which deals with'a moment at one end only. The stiffness factor com-
puted from Fig. 18(d) is first computed as the moment necessary-to give the

2? 5 A, which represents the over-all cur-
vature in the beam. Top and bottom stiffnesses for the columns are computed
by a procedure that is similar but is simplified because there are no ¢-angles
in the columns. After-all stiffness factors are computed, they are multiplied
by a factor which will reduce the deck stiffness to unity in order to sunpllfy
subsequent arithmetical work.

The computation for Fig. 19(a) is a much faster procedure than the un-
initiated would suspect. When the traverse computation arrives at the top
of a column both column moments are obtained by one setting of the slide

1 Transactions, Am. Soc. C. E., Vol. 104 (1939), p- 521,

value of unity to the angle shown as
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rule as they bear the same ratio to the moments written on column ¢f that the
angle at the top of the column bears to the angle at the top of column ¢f.
Fig. 19(b) is nearly all copied from Fig. 19(a). The computations for Fig.
19(b) take less than one minute. As soon asg they are complete a single slide-
196.6
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rule setting will disclose whether either Fig. 19(a) or 19(b) contains an error.

There is more than one way to compute sidesway moments using the tra-
verse method. Fig. 19(c) represents an elastic curve traverse converted into
an amplified form of slope deflection which-can be applied to the two-story
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structures treated in the authors’ paper. The key to this method is to express
the values of the angles which govern the stlffnesses in terms of the 6-angles
and then proceed as in slope deflection.

Table 7 shows the moments computed from Fig. 2. The check with the
authors’ moments is exact.

TABLE 7.—MOMENTS COMPU'fED FrROM F1G. 19

Description d a ba be e be | ¢ 7 Shear

11?63: X Fig. 19(a) ... ....... 558 1120 | 112 | 70| 35| 42| 06| 03| 1582 +4
117:'83;,8 X Fig. 19(0) . ......... 35| 7.0 | 130.5 [81.6]40.7|48.9| 7.0 | 3.5] 1013 +h
Moments without sidesway ...} 59.3| 119.0 | 141.7 |88.6 [44.2|53.1] 7.6 | 3.8 56.9 =+ k (check)
Johnston-Mount............. 59.3 | 118.0 | 141.7 (88.6 {44.2{53.1| 7.6 | 3.8 e
Sidesway Correction:

ngv X Fig. 19(c) . . ........ 10.5 6.7 5.1 |10.2|12.2| 5.1| 6.7 {105} 569 +h

Moments with sidesway ....|48.8| 112.3 | 146.8 [98.8 [56.4[48.0| 0.9 | 6.7 Zero

Johnston-Mount........... 48.81 1123 | 146.8 |98.8]56.4148.0) 09 | 6.7 .

To summarize: The methods demonstrated by the authors to establish a
basis for the design of structures with semi-rigid joints required the use of
derived constants and derived formulas which are inherently very complex.

The use of the basic constants of flexure!s in an orderly manner assisted
by a pictorial graph of the flexure will eliminate the necessity of making refer-
ence either to special slope deflection equations or to formula for constants
in an independent solution of problems of this class. (“Independent’ solution
means one not dependent on a set of charts and diagrams prepared by some
one else. In court testimony in a building failure case the solution should be
independent.)

It will also eliminate most of the anxiety regarding the p0551b111ty of errors.

Jarosuav J. Porivea,” M. Am. Soc. C. E. (by letter).—A complete
analysis of building frames with semi-rigid connections is presented in this
interesting and valuable paper. The authors have corroborated their analytical
methods by tests. Both methods applied (slope deflection and moment dis-
tribution) have the same disadvantage—namely, that the computations must
be made separately for each type of loading, and the exact and refined method,
demonstrated by the authors, becomes complex and tedious, even for such a
simple case as a two-story building with three equal bays (Fig. 8). The au-
thors agree that the method is not applicable to ordinary design. Three types
.of loading (Fig. 14) require the determination of sixteen unknown slopes and
this number increases to forty eight for an unsymmetrical four-story building.

The writer has attempted to find the answer to three questions relating to
- the analysis of building frames with semi-rigid connections:

(1) How are the results affected by certam assumptlons that would simplify
the analysis considerably?

16 Transactions, Am. Soc. C. E., Vol. 102 (1937), pp. 41-44.

17 Research Associate, Univ. of California, and Cons. Engr., Berkeley, Calif.
~
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(2) Is it possible to determine certain constants of a given building frame
that would be applicable for any type of loading?

(3) What are the short cuts of a general exact method permitting sufficient
accuracy in the analysis? :

Using the method of elastic weights,’ two characteristic points for each
structural member can be determined. The characteristic points are constants
of the building frame and represent sufficient data.to analyze the frame for any

&
) J J
\ /
N 7
N\
G AR 4 G
= N\ 7/ 5
2 \ N, L_4o/ 2
z . "*3_ L/[m -
/
S D" s/ \‘B
Gpall” .
i S A -
Yaa } // 1 ga——> Gga
Y A
L
7777777, TITI777
Fia. 20

type of loading, either vertical or horizontal. The characteristic points are
centers of simultaneous elastic rotations and can be determined by the following
relationships (see Fig. 20):

. LG
, 4B = ST 2Gag (26a)
and , _ G .
S . L '
tBA = m ................... . (26b)

in which, in addition to the notation of the paper, G is the elastic weight of the
beam < ELI> and G4 and Gp are the elastic weights of the supports A and

B. Angular rotations at A and B due to a unit moment are G4z and Gpa.
"~ .For semi-rigid connections Egs. 26 become

. LG ,
1AB = 3 [G + 3 (GAB +7)] .................. (27a)

18 “Graphical Methods of Analyzing Statically Indetermmate Structures,” mlmeographed lectures by
J. J. Polivka, Berkeley, Calif., 1040 and 1941,
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and
: . L@
1BA = 3 [G + 2 (GBA +'y)] .................. (27b)

In the simple case in which the width of a member is assumed equal to zero
(Fig. 20), the centers of rotation D’ and D" relating to rigidly restrained sup-

ports at A and B are distant 32 from the supports.

For a finite member width, this distance can be determined graphically,
as shown in Fig. 21, or algebraically by

o GLO+282 4200 +0)T+12vb(+0)

SW@F2 0 F2D) ... (28)

Gus
( . Rotation,g
Rotation, v . ,
— b l : b
L
Z 7.
Fia, 21

Using the values in the authors’ example—@ = 0.04507, ] = 160 in., b = 4 in.,
and v = 0.01775—the distance ¢° = 36.223 in. Since the carry-over factor is

~ io
. | TS g .. (29)
the accuracy of this method may be checked with the results obtained by the
authors: t° = 1%6127% = 0.27488‘(compared with 0.275 found by the authors).

In the example discussed (Fig. 8), the elastic weight of support of the
beam 3-4 results in : ’
G3-5 G-'S“l

G3—4 = m ......................
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5 . 0.00878 X 0:.01008

That is, Gs-s = 0.00878 X 0.01008 — 0.00469 and the center of resultant rota-

G+ 2y
G+2 (Gt v

same value is obtained using the simple term ¢ =

= 32.444 in. Practically the

LG
3G + 2 (Ge-s + 7)1

tion is determined by ¢ = <°

rk

— AU,

Fia. 22

+ b = 28.058 4+ 4 = 32.058 in., the difference for this short cut being only
1.29%, affecting the center moment of the beam on the side of safety. Thxs
simplification eliminates entirely the complex term in Eq. 30.

Knowing the characteristic points of each structural member determining
all carry-over factors, the moment diagrams for any type of loading can readily
be plotted, as shown in Fig. 22.

. BrucE JorNsTON,!? Assoc. M. Aum. Soc. C. E., aNp Epwarp H. Mount,?
Esq.—The worth-while discussions contributed to this paper are appreciated.
Mr. van Buren assumes uniform distribution of the beam reaction in the
column at a point of inflection and then concludes that the “reaction as a load
on the structure’” should be considered to act at the centroid of the half-column
width adjacent to the beam. This would produce a moment at the joint
’ center equal to ©“V ¢ b, in which ¢ b is the distance from the joint center to the
centroid of the half column.” If a complete free-body diagram is drawn of
the end of the beam, extended just to the column center line, it will be obvious
that the moment V g b is balanced by an equal and opposite moment resulting
from normal stresses acting on the vertically cut section of the column web.
These stresses are in equilibrium with the section of the column cut away from
the imaginary free body.

13 Engr., Bureau of Yards and Docks, U. 8. Navy, Washington, D. C.
2 Formerly Am. Welding Soc. Research Fellow at Fritz Eng. Laboratory, Lehigh Univ., Bethlehem Pa.
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It should be emphasized that the “hypothetlcal” moment at the joint center
is a pure fiction, created simply for convenience of- analysis, as a result of which
moments are balanced at the joint center without separate consideration of the
shears. The actual distribution of stresses acting in and around the joint is
very complex. Exact stress analys1s is out of the question and the general
behavior of the connection in so far as it affects frame behavior is of more im-
portance than a complete knowledge of stresses.

In & “rigid” frame joint, the reaction stress introduced into a column by a
- beam (apart from the moment producmg stresses) would be uniformly dis-

-tributed over the column cross sec-

TABLE 8.—CoumparisoN tion a short distance below the con-
oF MoMENTS . . .
nection; but, in the case of a semi-
z rigid joint, the reaction of the beam

. ; Connection
A . yy .
Tocation, | Connection moments, | /. inents,  could cause a slight tilting .of the
member | Table 3 | gumptions | DY test column and would shift the resultant
W @ @ | @ of the column stress (again assuming
12 —150 .{:5% 30 +z§-8 no rotation of the end of the beam—
2-1 +33.50 . 9 i ion)
1 Zonds | ~ioL1o ~10s'3 that is, nlrzl frame;1 afctltl)n)‘. The reac-
34 —109. —111; ~102. i i
34 el | piaE T2 tion would not shift all the way fror.n
48 - _&g.‘ég -—_13(5).(252 —f%.g the center to the column face, but this
.31 +55j5g +ggﬁ;g j—_%ﬁg amount of shift makes a convenient
- 74.4 76 |- X . D
g_g i3g_82 igl_m .4._33_; assumption and happens to coincide
b igzé?, ' iégig- fggjg with Mr. van Buren’s suggestion.
4-6 —88. - —88.
o e Tiaos 579 Table 8, Co!. 2, presents the results
of an analysis of the frame as loaded

in Fig. 8, glvmg the results of the

wrlters original analy51s taken from Table 3. Col. 3 is for the analysis with

" dolumn reactions assumed atthe connection face (a8 suggested by Mr. van Buren

for flanged columns), and Col. 4 gives moments actually determined bytest. The

results are not very consistent, but may be compared on the basis of the fol-
lowing percentage of summed differences:

Z(Difference between Col. 4 and Col. 3 or Col. 2)
2 Col. 4

X 100 .

This percentage of error in the summed differences gives most welght to
the moments of largest magnitude. The percentage of the summed differences
is 9.95% for the writer’s original analysis (Col. 2), and 15.05%, for the as-

_sumption of column reaction at column face (Col. 3).

Although the analysis assuming column reaction at column face appears to -
be definitely less in agreement with test results, it is: perhaps more important
that the difference between the two is less than the percentage of error in the
summed differences by the writers’ original analysis. It should be added that
the percentage of error in the summed differences of a “rigid frame analysis’ is
58.61%, (see analysis in discussion by Messrs. Smith, Zick, and Wan). Ob-
viously, no analysis, however complicated, can ever account for variations in
fabrication, and all of the other factors that affect the behavior of the actual
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bare frame, to say nothing of what finally happens in the actual building when
cross framing, fireproofing, walls, and partitions are added. Nevertheless, the
behavior of the bare frame represents a dependable minimum on which to base

a more rational design procedure than that commonly used at present.

Messrs. Smith, Zick, and Wan, in their discussion, state: ‘“It seems that
the authors’ suggestion of neglécting the sidesway moments due to vertical
unsymmetrical loadings is contradictory to the degree of refinement in their
analysis.” The writers’ statement was not intended to apply to analysis but
rather to design, and particularly to design of sections of multi-story tier
buildings where enough duplication and regularity make semi-rigid design a
practicable possibility. In such cases local tendencies toward sidesway will
be absorbed largely by adjacent parts of the building frame. For example, the
agreement between test results and theoretical analysis for the unsymmetrical’
loading in Fig. 14(b) should be noted. Sidesway was neglected in this analysis.
Hence, refined methods of analysis may be used to show that sidesway in some
cases may be neglected in simplified and necessarily less refined procedures for
design. In cases where sidesway affects analysis to an appreciable degree, as
in the illustrative example, Fig. 11, there probably would not be enough dupli-
cation of structure to make actual design for semi-rigid behavmr an economical
procedure.

Mr. Lash provides a stimulating discussion on the subject of design.
Messrs. Smith, Zick, and Wan also discussed the design aspects of the non-
linear relation between moment and angle change in a semi-rigid connection.
The general subject of design is one that requires much more study before
complete, simple, and practical rules may be specified for all load conditions,
types of structure, and connection. The writers avoided this subject, their
primary object being to set up methods of analysis that might be used as a
basis from which to build rational procedures of design. One of the writers,
in collaboration with Robert A. Hechtman, Jun. Am. Soc. C. E., has presented
elsewhere a simple approach to the design problem (3).

Mr. Hechtman, in collaboration with one of the writers, recently completed
a program of tests on forty-seven different riveted beam-column connections
with beam depths ranging from 12 in. to 24 in. These tests have been spon-
sored at Lehigh University by the American Institute of Steel, Construction.
Preliminary studies of these test results indicate that the procedure of esti-
mating the behavior of a 24-in. beam connection from test results obtained with
a 12-in. beam connection is misleading, if not entirely unsatisfactory. This
procedure was used in the reports of the Steel Structures Research Committee

_of Great Britain, as illustrated by Mr. Lash in Fig. 16. The M-¢ relationship

of a top and seat angle beam connection is influenced by size and arrangement
of rivets, thickness of seat and top angles, thickness of beam and column
flanges, and other factors, many of which cannot be similar in the 12-in. and
24-in. beam connection because of practical design requiréments.

The beam lines for symmetrical loads, as shown by Mr. Lash in Fig. 16,
originally suggested as a criterion of design requirement by Cyril Batho,*

21 “Investigations on Beam and Stanchion Connections,” by C. Batho and H. C. Rowan, Second Rept.,
Steel Structures Research Committee, Dept. of Scientific and Industrxal Research of Great Britain, H. M.
Stationery Office, London, pp. 61-137.
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have been used to advantage in reporting recent tests of welded beam con-
nections.”? These tests and later tests now in progress indicate the possibility
of contriving welded semi-rigid connections that will develop nearly linear be-
havior up to a moment which gives an adequate factor of safety. .

It should be noted that the “beam line” shown by Mr. Lash in Fig. 16 is
for “constant beam load.” If the semi-rigid connections are actually con-
sidered in design, the load capacity of the beam will increase as the connection
stiffness increases. - If ‘the columns are assumed not to rotate, and the semi-
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- Fra. 23.—DzusigN REQUIREMENTS FOR 12 WF 25 BEAMI‘

r1g1d connections are counted upon to their full capacxty, the désign will be
for “constant maximum beam stress,” and the design requ1rements are then
more severe than for “constant beam load.”

The beam-line equation for “constant beam load” has been noted by Mr.
Lash in Eq. 24 (Mr = M + 2 E K ¢). Eq. 24 is plotted as curve (1) in Fig.

23 for a 12 WF 25 beam (12-in., 25-1b wide flange I-beam) for ! 20. For.

. d
the condition of constant ma.ximum beam stress, Mg is not a constant. If the
maximum design stress of 20 kips per sq in. is developed, the following equa-

2 “Tests of Miscellaneous Welded Building Connections,” by Bruce Johnston and Gordon R. Delts
The Welding Journal, Vol. 21, No. 1, January, 1942 Research Supplement, pp. 5-8 to 27-s.
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tion gives-Mp for the uniformly loaded beam:
Mp=2208 + M) ..o 31)

in which S is the section modulus of beam. Substituting Eq. 31 in Eq. 24, the
beam-line equation for “constant maximum beam stress” is obtained:

M+6EK¢=408....0..... U (32)

Eq. 32 is plotted as curve (2) in Fig. 23. The beam line, curve (2), is cut
off by a horizontal line corresponding to joint rigidities equal to or greater than
75%, in which case the end moment governs the design. The experimental
curve in Fig. 23 represents results of a typical connection test of a riveted seat
and top angle connection, using a 12 WF 25 beam, as tested at the Fritz
Laboratory. ‘ . ’

In the foregoing, the columns are assumed not to bend or rotate at the
joint. When column bending due to unbalanced beam loads is allowed for,
the design loads will be less than assumed in Eq. 32. In such cases the design
requirements usually will be somewhere between beam curves (1) and (2),
Fig. 23. The beam line for uniform load and ‘“constant maximum stress,”
therefore, seems to be a good criterion of connection performance for actual
semi-rigid design. '

When column bending is allowed for, there may be some question as to
whether or not it is necessary to penalize the design load by the straight-line
construction shown in Fig. 16, drawn from the “twice working load” beam line,
because the design requirements will be modified by column rotation. How-
ever, in order to maintain a safe structural load factor, some reduction in de-
sign value must be made if the M-¢ curve is decidedly nonlinear up to a beam
line constructed on the basis of (working load) X (factor of safety). Mr. Lash
has suggested a factor of safety of 2, in Fig. 16, and this is a conservative value.

The discussions by Messrs. Peterson and Stewart both claim advantages
for the “flexure factor’” method of analysis as compared with moment distribu-
tion or slope deflection. In Table 7, Mr. Stewart'® shows an exact check by
the flexure factor method with the writers’ illustrative example, Fig. 11.

Any designer who 1s actively engaged in analyzing continuous structures
will be well repaid by a thorough study of the flexure factor method, as is
attested by the discussions of Mr. Stewart’s paper® by a number of designing
engineers who have used it in their work. The method is particularly advan-
tageous if variable load conditions are to be considered on any one structure.

In spite of the advantages of the flexure factor method as ‘an analytical
tool, the ultimate application to semi-rigid design probably will be made only
in cases of multi-story buildings with regular repetition of bays, or in the case
of a large factory with similar repetition of design in roof construction. In the
case of the multi-story building, the design probably will be made by means of
standardized connections and simplified design rules, and the designer will not
make a complete analysis at all, either by the writers’ method or by Mr.
Stewart’s method. It appears to the writers that the slope-deflection method
will be the most suitable in establishing general design formulas for typical and
limiting conditions, thereby leading to simplified design rules or charts.
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Mr, Polivka has shown, in his well-written discussion, how readily the

" graphical method of ““characteristic points” lends itself to the semi-rigid analy-

sis problem. His discussion, like Mr. Stewart’s, is a valuable addition to what

might be termed a symposium of different methods of semi-rigid frame analysis.

Perhaps it would be better to say “techniques” than “methods,” since all are

* merely special ways of determining terminal moments in framed members,
with the fundamental basis in each case being expressed by

My

which is the well-known equation of the bent beam., ‘

In conclusion, the writers wish to emphasize that the important problem
is not analysis, but design. More rational methods of analysis are significant
only to the extent that they result in more rational methods of design, thereby
reducing the “factor of ignorance’ and effecting greater economy in the use of
materials.
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