188 research outputs found

    Diffusion Effects on the Breakdown of a Linear Amplifier Model Driven by the Square of a Gaussian Field

    Get PDF
    We investigate solutions to the equation ∂tE−DΔE=λS2E\partial_t{\cal E} - {\cal D}\Delta {\cal E} = \lambda S^2{\cal E}, where S(x,t)S(x,t) is a Gaussian stochastic field with covariance C(x−x′,t,t′)C(x-x',t,t'), and x∈Rdx\in {\mathbb R}^d. It is shown that the coupling λcN(t)\lambda_{cN}(t) at which the NN-th moment diverges at time $t$, is always less or equal for ${\cal D}>0$ than for ${\cal D}=0$. Equality holds under some reasonable assumptions on $C$ and, in this case, $\lambda_{cN}(t)=N\lambda_c(t)$ where $\lambda_c(t)$ is the value of $\lambda$ at which diverges. The D=0{\cal D}=0 case is solved for a class of SS. The dependence of λcN(t)\lambda_{cN}(t) on dd is analyzed. Similar behavior is conjectured when diffusion is replaced by diffraction, D→iD{\cal D}\to i{\cal D}, the case of interest for backscattering instabilities in laser-plasma interaction.Comment: 19 pages, in LaTeX, e-mail addresses: [email protected], [email protected], [email protected], [email protected]

    A Note on the Generalized Friedmann Equations for a Thick Brane

    Full text link
    Within our thick brane approach previously used to obtain the cosmological evolution equations on a thick brane embedded in a five-dimensional Schwarzschild Anti-de Sitter spacetime it is explicitly shown that the consistency of these equations with the energy conservation equation requires that, in general, the thickness of the brane evolves in time. This varying brane thickness entails the possibility that both Newton's gravitational constant GG and the effective cosmological constant Λ4\Lambda_4 are time dependent.Comment: 6 pages,To appear in GR

    Terahertz imaging of sub-wavelength particles with Zenneck surface waves

    Get PDF
    Impact of sub-wavelength-size dielectric particles on Zenneck surface waves on planar metallic antennas is investigated at terahertz (THz) frequencies with THz near-field probe microscopy. Perturbations of the surface waves show the particle presence, despite its sub-wavelength size. The experimental configuration, which utilizes excitation of surface waves at metallic edges, is suitable for THz imaging of dielectric sub-wavelength size objects. As a proof of concept, the effects of a small strontium titanate rectangular particle and a titanium dioxide sphere on the surface field of a bow-tie antenna are experimentally detected and verified using full-wave simulations

    Resonant tunneling diodes as sources for millimeter and submillimeter wavelengths

    Get PDF
    High-quality Resonant Tunneling Diodes have been fabricated and tested as sources for millimeter and submillimeter wavelengths. The devices have shown excellent I-V characteristics with peak-to-valley current ratios as high as 6:1 and current densities in the range of 50-150 kA/cm(exp 2) at 300 K. Used as local oscillators, the diodes are capable of state of the art output power delivered by AlGaAs-based tunneling devices. As harmonic multipliers, a frequency of 320 GHz has been achieved by quintupling the fundamental oscillation of a klystron source

    Investigation on reconstruction methods applied to 3D terahertz computed tomography

    Get PDF
    International audience3D terahertz computed tomography has been performed using a monochromatic millimeter wave imaging system coupled with an infrared temperature sensor. Three different reconstruction methods (standard back-projection algorithm and two iterative analysis) have been compared in order to reconstruct large size 3D objects. The quality (intensity, contrast and geometric preservation) of reconstructed cross-sectional images has been discussed together with the optimization of the number of projections. Final demonstration to real-life 3D objects has been processed to illustrate the potential of the reconstruction methods for applied terahertz tomography

    Efficient compact modelling of UTC-photodiode towards terahertz communication system design

    Get PDF
    Monolithic optoelectronic integrated circuits, OEICs are seen as key enabling technologies to minimal power loss criteria. Monolithic OEICs combine, on the same die, cutting-edge optical devices and high speed III-V electronics able to generate terahertz signal targeting beyond-5G networks. Computationally efficient compact models compatible with existing software tool and design flow are essential for timely and cost-effective OEIC achievement. The analog nature of photonic devices wholly justifies the use of methodologies alike the ones employed in electronic design automation, through implementation of accurate (and SPICE-compatible) compact models. This multidisciplinary work, describes an efficient compact model for Uni-Traveling Carrier photodiodes (UTC PD) which is a key component for OEICs. Its equations feature the UTC PD electronic transport and frequency response along with its photocurrent under applied optical power. It also dynamically takes into account the device junction temperature, accounting for the self-heating effect. Excellent agreement between model and measurements as well as model scalability (several geometries have been validated) has been achieved that marks the first demonstration of a multi-physics, computationally efficient and versatile compact model for UTC-PDs

    On the thin-shell limit of branes in the presence of Gauss-Bonnet interactions

    Full text link
    In this paper we study thick-shell braneworld models in the presence of a Gauss-Bonnet term. We discuss the peculiarities of the attainment of the thin-shell limit in this case and compare them with the same situation in Einstein gravity. We describe the two simplest families of thick-brane models (parametrized by the shell thickness) one can think of. In the thin-shell limit, one family is characterized by the constancy of its internal density profile (a simple structure for the matter sector) and the other by the constancy of its internal curvature scalar (a simple structure for the geometric sector). We find that these two families are actually equivalent in Einstein gravity and that the presence of the Gauss-Bonnet term breaks this equivalence. In the second case, a shell will always keep some non-trivial internal structure, either on the matter or on the geometric sectors, even in the thin-shell limit.Comment: 17 pages, 2 figures, RevTeX 4. Revised version accepted for publication in Physical Review

    Wideband THz time domain spectroscopy based on optical rectification and electro-optic sampling

    Get PDF
    We present an analytical model describing the full electromagnetic propagation in a THz time-domain spectroscopy (THz-TDS) system, from the THz pulses via Optical Rectification to the detection via Electro Optic-Sampling. While several investigations deal singularly with the many elements that constitute a THz-TDS, in our work we pay particular attention to the modelling of the time-frequency behaviour of all the stages which compose the experimental set-up. Therefore, our model considers the following main aspects: (i) pump beam focusing into the generation crystal; (ii) phase-matching inside both the generation and detection crystals; (iii) chromatic dispersion and absorption inside the crystals; (iv) Fabry-Perot effect; (v) diffraction outside, i.e. along the propagation, (vi) focalization and overlapping between THz and probe beams, (vii) electro-optic sampling. In order to validate our model, we report on the comparison between the simulations and the experimental data obtained from the same set-up, showing their good agreement

    Cosmological equations and Thermodynamics on Apparent Horizon in Thick Braneworld

    Full text link
    We derive the generalized Friedmann equation governing the cosmological evolution inside the thick brane model in the presence of two curvature correction terms: a four-dimensional scalar curvature from induced gravity on the brane, and a five-dimensional Gauss-Bonnet curvature term. We find two effective four-dimensional reductions of the Friedmann equation in some limits and demonstrate that they can be rewritten as the first law of thermodynamics on the apparent horizon of thick braneworld.Comment: 25 pages, no figure, a definition corrected, several references added, more motivation and discussio
    • …
    corecore