9 research outputs found

    Method for pluvial flood risk assessment in rural settlements characterised by scant information availability

    Get PDF
    In tropical regions, heavy precipitations may lead to catastrophic flooding due to the degradation of catchments and the expansion of settlements in flood prone zones. In the current situation, where information on rainfall and exposed assets is either scant, or requires significant time to be collected, pluvial flood risk assessments are conducted using participatory tools, without any scientific support. Another option is to use satellite precipitation products, digital terrain models and satellite images at high to moderate-resolution. However, these datasets do not reach the required accuracy at the local scale. Consequently, the potential damages and the evaluation component of risk assessment are often missing. Risk evaluation is pivotal for informed decision making, with regards to the choice of treating or accepting the risk, implementing more effective measures, and for determining the safest areas for development. We proposed an improved method for assessing the risk of pluvial floods, which merges local and scientific knowledge and is consistent with the ISO 31010 standard. The method was successfully applied in five rural settlements in Niger and can be replicated in areas where information is scarce

    Diagnostic accuracy of VIKIA® Rota-Adeno and Premier™ Rotaclone® tests for the detection of rotavirus in Niger

    No full text
    Abstract Objective We conducted a parallel evaluation of the diagnostic accuracy of VIKIA® Rota-Adeno, a rapid diagnostic test (RDT) and Premier™ Rotaclone® an enzyme immunoassay (EIA) using reverse transcription polymerase chain reaction (RT-PCR) as the reference standard. The study was part of a rotavirus surveillance project in Niger. Results The sensitivity of both tests was 80.7%. After exclusion of one indeterminate result by visual reading, the specificity of the Premier™ Rotaclone® was 100% by visual or optical density readings and that of VIKIA® Rota-Adeno test was 95.5%. Inter-reader agreement was excellent for both tests (kappa = 1). Our results showed almost similar performance of the EIA and RDT when compared to RT-PCR. Hence, the VIKIA® Rota-Adeno could be a good alternative for use in peripheral health centres where laboratory capacity is limited

    <i>Shigella</i> serotypes identified in the study.

    No full text
    <p>*Not including the four rough (auto-agglutinable) and the two non-agglutinable isolates</p><p><i>Shigella</i> serotypes identified in the study.</p

    The groundnut improvement network for Africa (GINA) germplasm collection: a unique genetic resource for breeding and gene discovery

    No full text
    International audienceCultivated peanut or groundnut (Arachis hypogaea L.) is a grain legume grown in many developing countries by smallholder farmers for food, feed, and/or income. The speciation of the cultivated species, that involved polyploidization followed by domestication, greatly reduced its variability at the DNA level. Mobilizing peanut diversity is a prerequisite for any breeding program for overcoming the main constraints that plague production and for increasing yield in farmer fields. In this study, the Groundnut Improvement Network for Africa assembled a collection of 1,049 peanut breeding lines, varieties, and landraces from 9 countries in Africa. The collection was genotyped with the Axiom_Arachis2 48K SNP array and 8,229 polymorphic single nucleotide polymorphism (SNP) markers were used to analyze the genetic structure of this collection and quantify the level of genetic diversity in each breeding program. A supervised model was developed using dapc to unambiguously assign 542, 35, and 172 genotypes to the Spanish, Valencia, and Virginia market types, respectively. Distance-based clustering of the collection showed a clear grouping structure according to subspecies and market types, with 73% of the genotypes classified as fastigiata and 27% as hypogaea subspecies. Using STRUCTURE, the global structuration was confirmed and showed that, at a minimum membership of 0.8, 76% of the varieties that were not assigned by dapc were actually admixed. This was particularly the case of most of the genotype of the Valencia subgroup that exhibited admixed genetic heritage. The results also showed that the geographic origin (i.e. East, Southern, and West Africa) did not strongly explain the genetic structure. The gene diversity managed by each breeding program, measured by the expected heterozygosity, ranged from 0.25 to 0.39, with the Niger breeding program having the lowest diversity mainly because only lines that belong to the fastigiata subspecies are used in this program. Finally, we developed a core collection composed of 300 accessions based on breeding traits and genetic diversity. This collection, which is composed of 205 genotypes of fastigiata subspecies (158 Spanish and 47 Valencia) and 95 genotypes of hypogaea subspecies (all Virginia), improves the genetic diversity of each individual breeding program and is, therefore, a unique resource for allele mining and breeding

    Enteric bacterial pathogens in children with diarrhea in Niger: diversity and antimicrobial resistance.

    Get PDF
    Although rotavirus is the leading cause of severe diarrhea among children in sub-Saharan Africa, better knowledge of circulating enteric pathogenic bacteria and their antimicrobial resistance is crucial for prevention and treatment strategies.As a part of rotavirus gastroenteritis surveillance in Maradi, Niger, we performed stool culture on a sub-population of children under 5 with moderate-to-severe diarrhea between April 2010 and March 2012. Campylobacter, Shigella and Salmonella were sought with conventional culture and biochemical methods. Shigella and Salmonella were serotyped by slide agglutination. Enteropathogenic Escherichia coli (EPEC) were screened by slide agglutination with EPEC O-typing antisera and confirmed by detection of virulence genes. Antimicrobial susceptibility was determined by disk diffusion. We enrolled 4020 children, including 230 with bloody diarrhea. At least one pathogenic bacterium was found in 28.0% of children with watery diarrhea and 42.2% with bloody diarrhea. Mixed infections were found in 10.3% of children. EPEC, Salmonella and Campylobacter spp. were similarly frequent in children with watery diarrhea (11.1%, 9.2% and 11.4% respectively) and Shigella spp. were the most frequent among children with bloody diarrhea (22.1%). The most frequent Shigella serogroup was S. flexneri (69/122, 56.5%). The most frequent Salmonella serotypes were Typhimurimum (71/355, 20.0%), Enteritidis (56/355, 15.8%) and Corvallis (46/355, 13.0%). The majority of putative EPEC isolates was confirmed to be EPEC (90/111, 81.1%). More than half of all Enterobacteriaceae were resistant to amoxicillin and co-trimoxazole. Around 13% (46/360) Salmonella exhibited an extended-spectrum beta-lactamase phenotype.This study provides updated information on enteric bacteria diversity and antibiotic resistance in the Sahel region, where such data are scarce. Whether they are or not the causative agent of diarrhea, bacterial infections and their antibiotic resistance profiles should be closely monitored in countries like Niger where childhood malnutrition pre-disposes to severe and invasive infections
    corecore