22 research outputs found

    A Modified Simplified Reference Tissue Model for the Quantification of Dopamine D<sub>2/3</sub> Receptors with [<sup>18</sup>F]Fallypride Images

    No full text
    AbstractDefluorination of [18F]fallypride and accumulation of 18F in skull and glands leads to the contamination of brain structures with spillover activity due to partial volume effects, leading to considerable errors in binding potential estimations. Here we propose a modification of the simplified reference tissue model (SRTM) to take into account the contribution of skull activity to the radioactivity kinetic pattern in cerebellum and target regions. It consists of the introduction of an additional parameter for each volume of interest (sT) and one for the cerebellum (sR), corresponding to the fraction of skull activity contaminating these structures. Using five rat positron emission tomography experiments, we applied the modified SRTM (SRTMc), which resulted in excellent fits. As a relative means of comparison of results, we applied factor analysis (FA) to decompose dynamic data into images corresponding to brain and skull activity. With the skull factor images, we estimated the "true" sT and sR values, ultimately permitting us to fix the sR value. Parameters obtained with the SRTMc were closely correlated with values obtained from FA-corrected data. In conclusion, we propose an efficient method for reliable quantification of dopamine D2/3 receptors with single-injection [18F]fallypride scans that is potentially applicable to human studies where 18F skull accumulation compromises binding parameter estimation

    Chronic Δâč-tetrahydrocannabinol exposure induces a sensitization of dopamine D₂/₃ receptors in the mesoaccumbens and nigrostriatal systems

    No full text
    Δâč-tetrahydrocannabinol (THC), through its action on cannabinoid type-1 receptor (CB₁R), is known to activate dopamine (DA) neurotransmission. Functional evidence of a direct antagonistic interaction between CB₁R and DA D₂-receptors (D₂R) suggests that D₂R may be an important target for the modulation of DA neurotransmission by THC. The current study evaluated, in rodents, the effects of chronic exposure to THC (1 mg/kg/day; 21 days) on D₂R and D₃R availabilities using the D₂R-prefering antagonist and the D₃R-preferring agonist radiotracers [Âč⁞F]fallypride and [ÂłH]-(+)-PHNO, respectively. At 24 h after the last THC dose, D₂R and D₃R densities were significantly increased in midbrain. In caudate/putamen (CPu), THC exposure was associated with increased densities of D₂R with no change in D₂R mRNA expression, whereas in nucleus accumbens (NAcc) both D₃R binding and mRNA levels were upregulated. These receptor changes, which were completely reversed in CPu but only partially reversed in NAcc and midbrain at 1 week after THC cessation, correlated with an increased functionality of D₂/₃R in vivo, based on findings of increased locomotor suppressive effect of a presynaptic dose and enhanced locomotor activation produced by a postsynaptic dose of quinpirole. Concomitantly, the observations of a decreased gene expression of tyrosine hydroxylase in midbrain together with a blunted psychomotor response to amphetamine concurred to indicate a diminished presynaptic DA function following THC. These findings indicate that the early period following THC treatment cessation is associated with altered presynaptic D₂/₃R controlling DA synthesis and release in midbrain, with the concurrent development of postsynaptic D₂/₃R supersensitivity in NAcc and CPu. Such D₂/₃R neuroadaptations may contribute to the reinforcing and habit-forming properties of THC

    A Modified Simplified Reference Tissue Model for the Quantification of Dopamine D2 Receptors with [18F]Fallypride Images

    No full text
    Defluorination of [18F]fallypride and accumulation of 18F in skull and glands leads to the contamination of brain structures with spillover activity due to partial volume effects, leading to considerable errors in binding potential estimations. Here we propose a modification of the simplified reference tissue model (SRTM) to take into account the contribution of skull activity to the radioactivity kinetic pattern in cerebellum and target regions. It consists of the introduction of an additional parameter for each volume of interest (sT) and one for the cerebellum (sR), corresponding to the fraction of skull activity contaminating these structures. Using five rat positron emission tomography experiments, we applied the modified SRTM (SRTMc), which resulted in excellent fits. As a relative means of comparison of results, we applied factor analysis (FA) to decompose dynamic data into images corresponding to brain and skull activity. With the skull factor images, we estimated the "true" sT and sR values, ultimately permitting us to fix the sR value. Parameters obtained with the SRTMc were closely correlated with values obtained from FA-corrected data. In conclusion, we propose an efficient method for reliable quantification of dopamine D2/3 receptors with single-injection [18F]fallypride scans that is potentially applicable to human studies where 18F skull accumulation compromises binding parameter estimation

    Innately low D2 receptor availability is associated with high novelty-seeking and enhanced behavioural sensitization to amphetamine

    No full text
    High novelty-seeking has been related to an increased risk for developing addiction, but the neurobiological mechanism underlying this relationship is unclear. We investigated whether differences in dopamine (DA) D2/3-receptor (D2/3R) function underlie phenotypic divergence in novelty-seeking and vulnerability to addiction. Measures of D2/3R availability using the D2R-preferring antagonist [18F]Fallypride, and the D3R-preferring agonist [3H]-(+)-PHNO and of DA-related gene expression and behaviours were used to characterize DA signalling in Roman high- (RHA) and low-avoidance (RLA) rats, which respectively display high and low behavioural responsiveness both to novelty and psychostimulant exposure. When compared to RLA rats, high novelty-responding RHAs had lower levels of D2R, but not D3R, binding and mRNA in substantia nigra/ventral tegmental area (SN/VTA) and showed behavioural evidence of D2-autoreceptor subsensitivity. RHA rats also showed a higher expression of the tyrosine hydroxylase gene in SN/VTA, higher levels of extracellular DA in striatum and augmentation of the DA-releasing effects of amphetamine (Amph), suggesting hyperfunctioning of midbrain DA neurons. RHA rats also exhibited lower availabilities and functional sensitivity of D2R, but not D3R, in striatum, which were inversely correlated with individual scores of novelty-seeking, which, in turn, predicted the magnitude of Amph-induced behavioural sensitization. These results indicate that innately low levels of D2R in SN/VTA and striatum, whether they are a cause or consequence of the concomitantly observed elevated DA tone, result in a specific pattern of DA signalling that may subserve novelty-seeking and vulnerability to drug use. This suggests that D2R deficits in SN/VTA and striatum could both constitute neurochemical markers of an addiction-prone phenotype

    5-HT2A receptor SPECT imaging with [ÂčÂČÂłI]R91150 under P-gp inhibition with tariquidar: More is better?

    No full text
    Pharmacological P-glycoprotein (P-gp) inhibition with tariquidar (TQD) is considered a promising strategy for the augmentation of radiotracer brain uptake. However, a region-dependent effect may compromise the robustness of quantitative studies. For this reason, we studied the effect of a TQD pretreatment on 5-HT2A imaging with [(123)I]R91150 and compared results with those obtained in Mdr1a knock-out (KO) rats

    In Vivo Quantification of 5-HT2A Brain Receptors in Mdr1a KO Rats with 123I-R91150 Single-Photon Emission Computed Tomography.

    No full text
    International audienceOur goal was to identify suitable image quantification methods to image 5-hydroxytryptamine2A (5-HT2A) receptors in vivo in Mdr1a knockout (KO) rats (i.e., P-glycoprotein KO) using 123I-R91150 single-photon emission computed tomography (SPECT). The 123I-R91150 binding parameters estimated with different reference tissue models (simplified reference tissue model [SRTM], Logan reference tissue model, and tissue ratio [TR] method) were compared to the estimates obtained with a comprehensive three-tissue/seven-parameter (3T/7k)-based model. The SRTM and Logan reference tissue model estimates of 5-HT2A receptor (5-HT2AR) nondisplaceable binding potential (BPND) correlated well with the absolute receptor density measured with the 3T/7k gold standard (r > .89). Quantification of 5-HT2AR using the Logan reference tissue model required at least 90 minutes of scanning, whereas the SRTM required at least 110 minutes. The TR method estimates were also highly correlated to the 5-HT2AR density (r > .91) and only required a single 20-minute scan between 100 and 120 minutes postinjection. However, a systematic overestimation of the BPND values was observed. The Logan reference tissue method is more convenient than the SRTM for the quantification of 5-HT2AR in Mdr1a KO rats using 123I-R91150 SPECT. The TR method is an interesting and simple alternative, despite its bias, as it still provides a valid index of 5-HT2AR density

    Quantification of GABA<sub>A</sub> receptors in the rat brain with [(<sup>123</sup>)I]Iomazenil SPECT from factor analysis-denoised images

    No full text
    In vivo imaging of GABAA receptors is essential for the comprehension of psychiatric disorders in which the GABAergic system is implicated. Small animal SPECT provides a modality for in vivo imaging of the GABAergic system in rodents using [(123)I]Iomazenil, an antagonist of the GABAA receptor. The goal of this work is to describe and evaluate different quantitative reference tissue methods that enable reliable binding potential (BP) estimations in the rat brain to be obtained

    COB231 targets amyloid plaques in post-mortem human brain tissue and in an Alzheimer mouse model

    No full text
    International audiencePrevious works have shown the interest of naturally fluorescent proflavine derivatives to label Abeta deposits in vitro. This study aimed to further characterize the properties of the proflavine 3-acetylamino-6-[3-(propargylamino)propanoyl]aminoacridine (COB231) derivative as a probe. This compound was therefore evaluated on human post-mortem and mice brain slices and in vivo in 18-month-old triple transgenic mice APPswe, PS1M146V and tauP301L (3xTgAD) mice presenting the main characteristics of Alzheimer's disease (AD). COB231 labelled amyloid plaques on brain slices of AD patients, and 3xTgAD mice at 10 and 0.1 ÎŒM respectively. However, no labelling of the neurofibrillary tangle-rich areas was observed either at high concentration or in the brain of fronto-temporal dementia patients. The specificity of this mapping was attested in mice using Thioflavin S and IMPY as positive controls of amyloid deposits. After intravenous injection of COB231 in old 3xTgAD mice, fluorescent amyloid plaques were detected in the cortex and hippocampus, demonstrating COB231 blood–brain barrier permeability. We also controlled the cellular localization of COB231 on primary neuronal cultures and showed that COB231 accumulates into the cytoplasm and not into the nucleus. Finally, using a viability assay, we only detected a slight cytotoxic effect of COB231 (< 10%) for the highest concentration (100 ÎŒM)
    corecore