440 research outputs found
Co‐operative cross‐platform courseware development
The UKMCC (UK Mathematics Courseware Consortium) is a Consortium funded under TLTP (Training and Learning Technology Programme) to produce courseware for service mathematics teaching, using the SEFI (Société Européenne pour la Formation des Ingénieurs) syllabus. There are agreed courseware design guidelines and a simple courseware management system which allows cross‐referencing. Courseware is divided into modules, with an author as implementer for each. On any one hardware platform, a variety of authoring languages is possible. Across hardware platforms, the design guidelines ensure that conversion is possible, and will preserve look and feel. We argue here that these arrangements provide a basis for continued co‐operation between authors and future development as the technology changes
Gang members are entangled in a web of violence that leads the gunman of today to become the victim of tomorrow
While the media often portrays a stark line between the victims of crime and offenders the reality is much more blurred. New research from David Pyrooz, Richard K. Moule, and Scott H. Decker find that this is especially the case for gang members who find that they are twice as likely to be both victims and offenders as non-gang members. They argue that gang membership is a large risk factor in this victim-offender overlap, as single acts of violence between gang members often lead to acts of retribution between gangs as a whole
An analysis of the methyl rotation dynamics in the S0 (X̃ 1A1) and T1 (ã 3A2) states of thioacetone, (CH3)2 CS and (CD 3)2 CS from pyrolysis jet spectra
Jet-cooled, laser-induced phosphorescence excitation spectra (LIP) of thioacetone (CH3)2CS/(CD3)2 CS have been recorded over the region 16 800-18 500 cm-1 using the pyrolysis jet spectroscopic technique. The responsible electronic transition, T 1 ←-S0, ã 3 A ″ ← X̃ 1A1, results from an n → π* electron promotion and gives rise to a pattern of vibronic bands that were attributed to activity of the methyl torsion and the sulphur out-of-plane wagging modes. The intensities of the torsional and wagging progressions in the excitation spectra were interpreted in terms of a C2υ-Cs molecular distortion of the triplet molecule from its singlet ground state equilibrium structure. A complete unrestricted Hartree-Fock (UHF) ab initio molecular orbital (MO) structural optimization of the T1 state predicted that the sulphur was displaced by 27.36° from the molecular plane and the methyl groups were rotated by 10.93° in clockwise-counterclockwise directions. Restricted Hartree-Fock (RHF) calculations were used to generate the F(θ1,θ2) potential surface governing methyl rotation for the S0 state. This was incorporated into a two-dimensional Hamiltonian, symmetrized for the G36 point group and solved variationally for the torsional frequencies. The calculated frequencies of 159.97/118.94 for the ν17 (b1) mode of S0 (CH3)2CS/(CD3)2 CS were found to agree with the experimental values, 153.2/114.7 cm-1. © 1991 American Institute of Physics.The authors are grateful to the Natural Sciences and Engineering Research Council of Canada for financial support of this work. D. J. C. acknowledges the support of the National Science Foundation through Grant No. CHE-8914403.Peer Reviewe
Optical description of solid-state dye-sensitized solar cells. II. Device optical modeling with implications for improving efficiency
We use the optical transfer-matrix method to quantify the spatial distribution of light in solid-state dye-sensitized solar cells (DSCs), employing material optical properties measured experimentally in the accompanying article (Part I) as input into the optical model. By comparing the optical modeling results with experimental photovoltaic action spectra for solid-state DSCs containing either a ruthenium-based dye or an organic indoline-based dye, we show that the internal quantum efficiency (IQE) of the devices for both dyes is around 60% for almost all wavelengths, substantially lower than the almost 100% IQE measured for liquid DSCs, indicating substantial electrical losses in solid-state DSCs that can account for much of the current factor-of-two difference between the efficiencies of liquid and solid-state DSCs. The model calculations also demonstrate significant optical losses due to absorption by 2, 2′,7, 7′ -tetrakis-(N,N -di- p -methoxyphenyl- amine)-9, 9′ -spirobifluorene (spiro-OMeTAD) and TiO2 in the blue and to a lesser extent throughout the visible. As a consequence, the more absorptive organic dye, D149, should outperform the standard ruthenium complex sensitizer, Z907, for all device thicknesses, underlining the potential benefits of high extinction coefficient dyes optimized for solid-state DSC operation. © 2009 American Institute of Physics.David M. Huang, Henry J. Snaith, Michael Grätzel, Klaus Meerholz and Adam J. Moul
An O-Antigen glycoconjugate vaccine produced using protein glycan coupling technology is protective in an inhalational rat model of tularemia
There is a requirement for an efficacious vaccine to protect people against infection from Francisella tularensis, the etiological agent of tularemia. The lipopolysaccharide (LPS) of F. tularensis is suboptimally protective against a parenteral lethal challenge in mice. To develop a more efficacious subunit vaccine, we have used a novel biosynthetic technique of protein glycan coupling technology (PGCT) that exploits bacterial N-linked glycosylation to recombinantly conjugate F. tularensis O-antigen glycans to the immunogenic carrier protein Pseudomonas aeruginosa exoprotein A (ExoA). Previously, we demonstrated that an ExoA glycoconjugate with two glycosylation sequons was capable of providing significant protection to mice against a challenge with a low-virulence strain of F. tularensis. Here, we have generated a more heavily glycosylated conjugate vaccine and evaluated its efficacy in a Fischer 344 rat model of tularemia. We demonstrate that this glycoconjugate vaccine protected rats against disease and the lethality of an inhalational challenge with F. tularensis Schu S4. Our data highlights the potential of this biosynthetic approach for the creation of next-generation tularemia subunit vaccines
Immunocytochemical determination of the subcellular distribution of ascorbate in plants
Ascorbate is an important antioxidant in plants and fulfills many functions related to plant defense, redox signaling and modulation of gene expression. We have analyzed the subcellular distribution of reduced and oxidized ascorbate in leaf cells of Arabidopsis thaliana and Nicotiana tabacum by high-resolution immuno electron microscopy. The accuracy and specificity of the applied method is supported by several observations. First, preadsorption of the ascorbate antisera with ascorbic acid or dehydroascorbic acid resulted in the reduction of the labeling to background levels. Second, the overall labeling density was reduced between 50 and 61% in the ascorbate-deficient Arabidopsis mutants vtc1-2 and vtc2-1, which correlated well with biochemical measurements. The highest ascorbate-specific labeling was detected in nuclei and the cytosol whereas the lowest levels were found in vacuoles. Intermediate labeling was observed in chloroplasts, mitochondria and peroxisomes. This method was used to determine the subcellular ascorbate distribution in leaf cells of plants exposed to high light intensity, a stress factor that is well known to cause an increase in cellular ascorbate concentration. High light intensities resulted in a strong increase in overall labeling density. Interestingly, the strongest compartment-specific increase was found in vacuoles (fourfold) and in plastids (twofold). Ascorbate-specific labeling was restricted to the matrix of mitochondria and to the stroma of chloroplasts in control plants but was also detected in the lumen of thylakoids after high light exposure. In summary, this study reveals an improved insight into the subcellular distribution of ascorbate in plants and the method can now be applied to determine compartment-specific changes in ascorbate in response to various stress situations
Efficacy of cathelicidin-mimetic antimicrobial peptoids against staphylococcus aureus
Staphylococcus aureus is one of the most common pathogens associated with infection in wounds. The current standard of care uses a combination of disinfection and drainage followed by conventional antibiotics such as methicillin. Methicillin and vancomycin resistance has rendered these treatments ineffective, often causing the reemergence of infection. This study examines the use of antimicrobial peptoids (sequence-specific poly-N-substituted glycines) designed to mimic naturally occurring cationic, amphipathic host defense peptides, as an alternative to conventional antibiotics. These peptoids also show efficient and fast (<30 min) killing of methicillin-susceptible S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA) at low micromolar concentrations without having apparent cytotoxic side effects in vivo. Additionally, these novel peptoids show excellent efficacy against biofilm formation and detachment for both MSSA and MRSA. In comparison, conventional antibiotics were unable to detach or prevent formation of biofilms. One cationic 12mer, Peptoid 1, shows great promise, as it could prevent formation of and detach biofilms at concentrations as low as 1.6 μM. The use of a bioluminescent S. aureus murine incision wound model demonstrated clearance of infection in peptoid-treated mice within 8 days, conveying another advantage these peptoids have over conventional antibiotics. These results provide clear evidence of the potential for antimicrobial peptoids for the treatment of S. aureus wound infections. IMPORTANCE Staphylococcus aureus resistance is a consistent problem with a large impact on the health care system. Infections with resistant S. aureus can cause serious adverse effects and can result in death. These antimicrobial peptoids show efficient killing of bacteria both as a biofilm and as free bacteria, often doing so in less than 30 min. As such, these antimicrobials have the potential to alleviate the burden that Staphylococcus infections have on the health care system and cause better outcomes for infected patients
Prevalence and microbiological characteristics of clinically infected foot-ulcers in patients with rheumatoid arthritis: A retrospective exploratory study
Background: The prevalence of foot ulcers in patients with rheumatoid arthritis (RA) has been reported at almost 10 %. These foot ulcers often occur at multiple sites and are reoccurring, with the potential risk of infection increased due to RA diagnosis and disease modifying medications. The objective of this study was to estimate the prevalence of clinical infection in foot-ulcers of patients with RA; describe the microbiological characteristics and investigate risk factors. Methods: Retrospective clinical data was collected for all patients attending a rheumatology foot ulcer clinic between 1st May 2012 and 1st May 2013: wound swab data was collected from those with clinical infection. Results: Twenty-eight patients with RA and foot-ulcers were identified; eight of these patients had clinical infection and wound swabs taken (29 %). Of these eight patients there were equal men and women, with median age 74 years, and average disease duration 22 years. Cardiovascular disease/peripheral-vascular disease (CVD/PVD) were reported in six patients, diabetes in two patients. Six patients were treated with disease-modifying anti-rheumatic drugs (DMARDs); three were on biologic medications and two on steroids. Five wound swabs cultured skin flora, one staphylococcus aureus, one had no growth after culture; and one was rejected due to labelling error. Conclusion: Almost a third of people with RA and foot ulcers attending clinic over one year had clinical infection, however microbiological analysis failed to isolate pathogens in six of seven wound swabs. This may be due to inaccurate diagnosis of ulcer infection or to issues with sampling, collection, transport, analysis or reporting. There was insufficient data to relate risk of clinical infection with risk factors. Further research is required to identify the most appropriate techniques for infection diagnosis, wound sampling and processing. Trial registration: Ethical approval was obtained from University of Leeds, Faculty of Medicine and Health (Reference number: SHREC/RP/349)
What impact do posters have on academic knowledge transfer? A pilot survey on author attitudes and experiences
<p>Abstract</p> <p>Background</p> <p>Research knowledge is commonly facilitated at conferences via oral presentations, poster presentations and workshops. Current literature exploring the efficacy of academic posters is however limited. The purpose of this initial study was to explore the perceptions of academic poster presentation, together with its benefits and limitations as an effective mechanism for academic knowledge transfer and contribute to the available academic data.</p> <p>Methods</p> <p>A survey was distributed to 88 delegates who presented academic posters at two Releasing Research and Enterprise Potential conferences in June 2007 and June 2008 at Bournemouth University. This survey addressed attitude and opinion items, together with their general experiences of poster presentations. Descriptive statistics were performed on the responses.</p> <p>Results</p> <p>A 39% return was achieved with the majority of respondents believing that posters are a good medium for transferring knowledge and a valid form of academic publication. Visual appeal was cited as more influential than subject content, with 94% agreeing that poster imagery is most likely to draw viewer's attention. Respondents also believed that posters must be accompanied by their author in order to effectively communicate the academic content.</p> <p>Conclusion</p> <p>This pilot study is the first to explore perceptions of the academic poster as a medium for knowledge transfer. Given that academic posters rely heavily on visual appeal and direct author interaction, the medium requires greater flexibility in their design to promote effective knowledge transfer. This paper introduces the concept of the IT-based 'MediaPoster' so as to address the issues raised within published literature and subsequently enhance knowledge-transfer within the field of academic medicine.</p
- …