637 research outputs found

    An exact method for a discrete multiobjective linear fractional optimization

    Get PDF
    Integer linear fractional programming problem with multiple objective MOILFP is an important field of research and has not received as much attention as did multiple objective linear fractional programming. In this work, we develop a branch and cut algorithm based on continuous fractional optimization, for generating the whole integer efficient solutions of the MOILFP problem. The basic idea of the computation phase of the algorithm is to optimize one of the fractional objective functions, then generate an integer feasible solution. Using the reduced gradients of the objective functions, an efficient cut is built and a part of the feasible domain not containing efficient solutions is truncated by adding this cut. A sample problem is solved using this algorithm, and the main practical advantages of the algorithm are indicated

    An exact method for a discrete multiobjective linear fractional optimization

    Get PDF
    Integer linear fractional programming problem with multiple objective MOILFP is an important field of research and has not received as much attention as did multiple objective linear fractional programming. In this work, we develop a branch and cut algorithm based on continuous fractional optimization, for generating the whole integer efficient solutions of the MOILFP problem. The basic idea of the computation phase of the algorithm is to optimize one of the fractional objective functions, then generate an integer feasible solution. Using the reduced gradients of the objective functions, an efficient cut is built and a part of the feasible domain not containing efficient solutions is truncated by adding this cut. A sample problem is solved using this algorithm, and the main practical advantages of the algorithm are indicated.multiobjective programming, integer programming, linear fractional programming, branch and cut

    Exploring a Non-Minimal Sterile Neutrino Model Involving Decay at IceCube and Beyond

    Get PDF
    We study the phenomenology of neutrino decay together with neutrino oscillations in the context of eV-scale sterile neutrinos. We review the formalism of visible neutrino decay in which one of the decay products is a neutrino that potentially can be observed. We apply the formalism developed for decay to the recent sterile neutrino search performed by IceCube with TeV neutrinos. We show that for Îœ4\nu_4 lifetime τ4/m4â‰Č10−16eV−1s\tau_4/m_4 \lesssim 10^{-16} {\rm eV^{-1}s}, the interpretation of the high-energy IceCube analysis can be significantly changed.Comment: 12 pages, 7 figures. Find code at: https://github.com/arguelles/nuSQUIDSDeca

    PropriĂ©tĂ©s physicochimiques et rhĂ©ologiques d’un mĂ©lange aqueux de biopolymĂšres et d’un tensioactif non ionique

    Get PDF
    Dans ce travail, on s‟intĂ©resse Ă  l‟effet des concentrations du xanthane, du casĂ©inate de sodium et du tween 20 sur les propriĂ©tĂ©s rhĂ©ologiques, zĂ©tamĂ©triques et de surface de leurs mĂ©langes, dans un milieu aqueux Ă  pH neutre. Il a Ă©tĂ© mis en Ă©vidence, Ă  l‟issue de l‟utilisation de la mĂ©thodologie des plans d‟expĂ©riences, de l‟existence des interactions rĂ©pulsives de sĂ©grĂ©gation entre les biopolymĂšres, gĂ©nĂ©rant un affaiblissement du module de conservation viscoĂ©lastique, G‟o et par la mĂȘme une fragilisation de la structure du systĂšme colloĂŻdal. Dans cette situation, il a Ă©tĂ© observĂ© que le potentiel zĂȘta diminue, ce qui laisse supposer que les interactions rĂ©pulsives Ă©lectrostatiques entre les deux espĂšces anioniques ne sont pas responsables du relĂąchement de la structure. Par ailleurs, il a Ă©tĂ© observĂ© que la tension de surface du mĂ©lange dĂ©pend essentiellement de la concentration du tween 20.Mots clĂ©s :BiopolymĂšres - Tween 20 – RhĂ©ologie - Tension de surface - Potentiel zĂȘta

    Formulation and Characterization of Double Emulsions W/O/W Stabilized by Two Natural Polymers with Two Manufacturing Processes (Comparative Study)

    Get PDF
    \ua9 2024 by the authors.Four distinct types of multiple emulsions were synthesized using xanthan gum and pectin through two distinct manufacturing processes. The assessment encompassed the examination of morphology, stability, and rheological properties for the resulting water-in-oil-in-water (W/O/W) double emulsions. Formulations were meticulously crafted with emulsifiers that were compatible with varying compositions. Remarkably stable multiple emulsions were achieved with a 0.5 wt% xanthan concentration, demonstrating resilience for nearly two months across diverse storage temperatures. In contrast, multiple emulsions formulated with a higher pectin concentration (2.75 wt%) exhibited instability within a mere three days. All multiple emulsions displayed shear-thinning behavior, characterized by a decline in apparent viscosity with escalating shear rates. Comparatively, multiple emulsions incorporating xanthan gum showcased elevated viscosity at low shear rates in contrast to those formulated with pectin. These results underscore the pivotal role of the stepwise process over the direct approach and emphasize the direct correlation between biopolymer concentration and emulsion stability. This present investigation demonstrated the potential use of pectin and xanthan gum as stabilizers of multiple emulsions with potential application in the pharmaceutical industry for the formulation of topical dosage forms

    Efficiency of Hydrogen Peroxide and Fenton Reagent for Polycyclic Aromatic Hydrocarbon Degradation in Contaminated Soil: Insights from Experimental and Predictive Modeling

    Get PDF
    \ua9 2024 by the authors.This study investigates the degradation kinetics of polycyclic aromatic hydrocarbons (PAHs) in contaminated soil using hydrogen peroxide (H2O2) and the Fenton process (H2O2/Fe2+). The effect of oxidant concentration and the Fenton molar ratio on PAH decomposition efficiency is examined. Results reveal that increasing H2O2 concentration above 25 mmol/samples leads to a slight increase in the rate constants for both first- and second-order reactions. The Fenton process demonstrates higher efficiency in PAH degradation compared to H2O2 alone, achieving decomposition yields ranging from 84.7% to 99.9%. pH evolution during the oxidation process influences PAH degradation, with alkaline conditions favoring lower elimination rates. Fourier-transform infrared (FTIR) spectroscopy analysis indicates significant elimination of PAHs after treatment, with both oxidants showing comparable efficacy in complete hydrocarbon degradation. The mechanisms of PAH degradation by H2O2 and the Fenton process involve hydroxyl radical formation, with the latter exhibiting greater efficiency due to Fe2+ catalysis. Gaussian process regression (GPR) modeling accurately predicts reduced concentration, with optimized ARD-Exponential kernel function demonstrating superior performance. The Improved Grey Wolf Optimizer algorithm facilitates optimization of reaction conditions, yielding a high degree of agreement between experimental and predicted values. A MATLAB 2022b interface is developed for efficient optimization and prediction of C/C0, a critical parameter in PAH degradation studies. This integrated approach offers insights into optimizing the efficiency of oxidant-based PAH remediation techniques, with potential applications in contaminated soil remediation

    A Proposal for a Three Detector Short-Baseline Neutrino Oscillation Program in the Fermilab Booster Neutrino Beam

    Get PDF
    A Short-Baseline Neutrino (SBN) physics program of three LAr-TPC detectors located along the Booster Neutrino Beam (BNB) at Fermilab is presented. This new SBN Program will deliver a rich and compelling physics opportunity, including the ability to resolve a class of experimental anomalies in neutrino physics and to perform the most sensitive search to date for sterile neutrinos at the eV mass-scale through both appearance and disappearance oscillation channels. Using data sets of 6.6e20 protons on target (P.O.T.) in the LAr1-ND and ICARUS T600 detectors plus 13.2e20 P.O.T. in the MicroBooNE detector, we estimate that a search for muon neutrino to electron neutrino appearance can be performed with ~5 sigma sensitivity for the LSND allowed (99% C.L.) parameter region. In this proposal for the SBN Program, we describe the physics analysis, the conceptual design of the LAr1-ND detector, the design and refurbishment of the T600 detector, the necessary infrastructure required to execute the program, and a possible reconfiguration of the BNB target and horn system to improve its performance for oscillation searches.Comment: 209 pages, 129 figure

    Observation and Characterization of a Cosmic Muon Neutrino Flux from the Northern Hemisphere using six years of IceCube data

    Get PDF
    The IceCube Collaboration has previously discovered a high-energy astrophysical neutrino flux using neutrino events with interaction vertices contained within the instrumented volume of the IceCube detector. We present a complementary measurement using charged current muon neutrino events where the interaction vertex can be outside this volume. As a consequence of the large muon range the effective area is significantly larger but the field of view is restricted to the Northern Hemisphere. IceCube data from 2009 through 2015 have been analyzed using a likelihood approach based on the reconstructed muon energy and zenith angle. At the highest neutrino energies between 191 TeV and 8.3 PeV a significant astrophysical contribution is observed, excluding a purely atmospheric origin of these events at 5.6 σ5.6\,\sigma significance. The data are well described by an isotropic, unbroken power law flux with a normalization at 100 TeV neutrino energy of (0.90−0.27+0.30)×10−18 GeV−1 cm−2 s−1 sr−1\left(0.90^{+0.30}_{-0.27}\right)\times10^{-18}\,\mathrm{GeV^{-1}\,cm^{-2}\,s^{-1}\,sr^{-1}} and a hard spectral index of Îł=2.13±0.13\gamma=2.13\pm0.13. The observed spectrum is harder in comparison to previous IceCube analyses with lower energy thresholds which may indicate a break in the astrophysical neutrino spectrum of unknown origin. The highest energy event observed has a reconstructed muon energy of (4.5±1.2) PeV(4.5\pm1.2)\,\mathrm{PeV} which implies a probability of less than 0.005% for this event to be of atmospheric origin. Analyzing the arrival directions of all events with reconstructed muon energies above 200 TeV no correlation with known Îł\gamma-ray sources was found. Using the high statistics of atmospheric neutrinos we report the currently best constraints on a prompt atmospheric muon neutrino flux originating from charmed meson decays which is below 1.061.06 in units of the flux normalization of the model in Enberg et al. (2008).Comment: 20 pages, 21 figure
    • 

    corecore