3,298 research outputs found

    Orbital selective insulator-metal transition in V2O3 under external pressure

    Full text link
    We present a detailed account of the physics of Vanadium sesquioxide (V2O3{\rm V_2O_3}), a benchmark system for studying correlation induced metal-insulator transition(s). Based on a detailed perusal of a wide range of experimental data, we stress the importance of multi-orbital Coulomb interactions in concert with first-principles LDA bandstructure for a consistent understanding of the PI-PM MIT under pressure. Using LDA+DMFT, we show how the MIT is of the orbital selective type, driven by large changes in dynamical spectral weight in response to small changes in trigonal field splitting under pressure. Very good quantitative agreement with (ii) the switch of orbital occupation and (iiii) S=1 at each V3+V^{3+} site across the MIT, and (iiiiii) carrier effective mass in the PM phase, is obtained. Finally, using the LDA+DMFT solution, we have estimated screening induced renormalisation of the local, multi-orbital Coulomb interactions. Computation of the one-particle spectral function using these screened values is shown to be in excellent quantitative agreement with very recent experimental (PES and XAS) results. These findings provide strong support for an orbital-selective Mott transition in paramagnetic V2O3{\rm V_2O_3}.Comment: 12 pages, 7 figure

    Out of equilibrium electronic transport properties of a misfit cobaltite thin film

    Full text link
    We report on transport measurements in a thin film of the 2D misfit Cobaltite Ca3Co4O9Ca_{3}Co_{4}O_{9}. Dc magnetoresistance measurements obey the modified variable range hopping law expected for a soft Coulomb gap. When the sample is cooled down, we observe large telegraphic-like fluctuations. At low temperature, these slow fluctuations have non Gaussian statistics, and are stable under a large magnetic field. These results suggest that the low temperature state is a glassy electronic state. Resistance relaxation and memory effects of pure magnetic origin are also observed, but without aging phenomena. This indicates that these magnetic effects are not glassy-like and are not directly coupled to the electronic part.Comment: accepted in Phys Rev B, Brief report

    Skew scattering due to intrinsic spin-orbit coupling in a two-dimensional electron gas

    Get PDF
    We present the generalization of the two-dimensional quantum scattering formalism to systems with Rashba spin-orbit coupling. Using symmetry considerations, we show that the differential scattering cross section depends on the spin state of the incident electron, and skew scattering may arise even for central spin-independent scattering potentials. The skew scattering effect is demonstrated by exact results of a simple hard wall impurity model. The magnitude of the effect for short-range impurities is estimated using the first Born approximation. The exact formalism we present can serve as a foundation for further theoretical investigations.Comment: 4 pages, 3 figur

    Charge and orbital order in Fe_3O_4

    Full text link
    Charge and orbital ordering in the low-temperature monoclinic structure of magnetite (Fe_3O_4) is investigated using LSDA+U. While the difference between t_{2g} minority occupancies of Fe^{2+}_B and Fe^{3+}_B cations is large and gives direct evidence for charge ordering, the screening is so effective that the total 3d charge disproportion is rather small. The charge order has a pronounced [001] modulation, which is incompatible with the Anderson criterion. The orbital order agrees with the Kugel-Khomskii theory.Comment: 4 pages, 2 figure

    Determination of the diffusion constant using phase-sensitive measurements

    Get PDF
    We apply a pulsed-light interferometer to measure both the intensity and the phase of light that is transmitted through a strongly scattering disordered material. From a single set of measurements we obtain the time-resolved intensity, frequency correlations and statistical phase information simultaneously. We compare several independent techniques of measuring the diffusion constant for diffuse propagation of light. By comparing these independent measurements, we obtain experimental proof of the consistency of the diffusion model and corroborate phase statistics theory.Comment: 9 pages, 8 figures, submitted to Phys. Rev.

    Differential cross sections for muonic atom scattering from hydrogenic molecules

    Get PDF
    The differential cross sections for low-energy muonic hydrogen atom scattering from hydrogenic molecules are directly expressed by the corresponding amplitudes for muonic atom scattering from hydrogen-isotope nuclei. The energy and angular dependence of these three-body amplitudes is thus taken naturally into account in scattering from molecules, without involving any pseudopotentials. Effects of the internal motion of nuclei inside the target molecules are included for every initial rotational-vibrational state. These effects are very significant as the considered three-body amplitudes often vary strongly within the energy interval ≲0.1\lesssim{}0.1 eV. The differential cross sections, calculated using the presented method, have been successfully used for planning and interpreting many experiments in low-energy muon physics. Studies of μ−\mu^{-} nuclear capture in pμp\mu and the measurement of the Lamb shift in pμp\mu atoms created in H2_2 gaseous targets are recent examples.Comment: 21 pages, 13 figures, submitted to Phys. Rev.

    Penetration of hot electrons through a cold disordered wire

    Full text link
    We study a penetration of an electron with high energy E<<T through strongly disordered wire of length L<<a (a being the localization length). Such an electron can loose, but not gain the energy, when hopping from one localized state to another. We have found a distribution function for the transmission coefficient t. The typical t remains exponentially small in L/a, but with the decrement, reduced compared to the case of direct elastic tunnelling. The distribution function has a relatively strong tail in the domain of anomalously high t; the average ~(a/L)^2 is controlled by rare configurations of disorder, corresponding to this tail.Comment: 4 pages, 5 figure

    Variation of the hopping exponent in disordered silicon MOSFETs

    Full text link
    We observe a complex change in the hopping exponent value from 1/2 to 1/3 as a function of disorder strength and electron density in a sodium-doped silicon MOSFET. The disorder was varied by applying a gate voltage and thermally drifting the ions to different positions in the oxide. The same gate was then used at low temperature to modify the carrier concentration. Magnetoconductivity measurements are compatible with a change in transport mechanisms when either the disorder or the electron density is modified suggesting a possible transition from a Mott insulator to an Anderson insulator in these systems.Comment: 6 pages, 5 figure

    Unusual thermoelectric behavior of packed crystalline granular metals

    Full text link
    Loosely packed granular materials are intensively studied nowadays. Electrical and thermal transport properties should reflect the granular structure as well as intrinsic properties. We have compacted crystalline CaAlCaAl based metallic grains and studied the electrical resistivity and the thermoelectric power as a function of temperature (TT) from 15 to 300K. Both properties show three regimes as a function of temperature. It should be pointed out : (i) The electrical resistivity continuously decreases between 15 and 235 K (ii) with various dependences, e.g. ≃\simeq T−3/4T^{-3/4} at low TT, while (iii) the thermoelectric power (TEP) is positive, (iv) shows a bump near 60K, and (v) presents a rather unusual square root of temperature dependence at low temperature. It is argued that these three regimes indicate a competition between geometric and thermal processes, - for which a theory seems to be missing in the case of TEP. The microchemical analysis results are also reported indicating a complex microstructure inherent to the phase diagram peritectic intricacies of this binary alloy.Comment: to be published in J. Appl. Phys.22 pages, 8 figure
    • …
    corecore