883 research outputs found

    Sliding Density-Wave in Sr_{14}Cu_{24}O_{41} Ladder Compounds

    Full text link
    We used transport and Raman scattering measurements to identify the insulating state of self-doped spin 1/2 two-leg ladders of Sr_{14}Cu_{24}O_{41} as a weakly pinned, sliding density wave with non-linear conductivity and a giant dielectric response that persists to remarkably high temperatures

    Modulation of p27/Cdk2 complex formation through 4D5-mediated inhibition of HER2 receptor signaling

    Get PDF
    The molecular mechanisms mediating the anti-proliferative effects of the murine anti-HER2 monoclonal antibody (4D5) were investigated in HER2-overexpressing human carcinoma cell lines. Treatment with 4D5 resulted in a dramatic accumulation of BT-474 breast carcinoma cells in Gl; concomitant with reduced expression of proteins involved in sequestration of the cyclin E/Cdk2 inhibitor protein p27, increased association of p27 with Cdk2 complexes and Cdk2 inactivation. No equivalent effects were observed in BT-474 cells treated with a control, non-inhibitory HER2 monoclonal antibody (FRP5) or in a HER2-overexpressing cell line insensitive to 4D5 treatment (MKN7 gastric carcinoma cells), confirming the relationship between these molecular changes and 4D5-mediated inhibition of proliferation. Increased p27 expression was also observed in 4D5-treated BT-474 cells; however an antisense approach demonstrated that this increase was not required for Cdk2 inactivation or establishment of the Gl block. These data suggest that 4D5 interferes with HER2 receptor signaling, resulting in downregulation of proteins involved in p27 sequestration. This causes release of p27, allowing binding and inhibition of cyclin E/Cdk2 complexes and inhibition of Gl/S progression. This model was confirmed using a second 4D5-sensitive, HER2-overexpressing breast tumor line (SKBR3), and suggests that the dependency of a given tumor cell on elevated HER2-receptor signaling for the maintenance of p27 sequestration proteins may determine the clinical response to treatment with the humanized anti-HER2 monoclonal antibody Herceptin® (trastuzumab

    Examining the Connections within the Startup Ecosystem: A Case Study of St. Louis

    Get PDF
    This paper documents the resurgence of entrepreneurial activity in St. Louis by reporting on the collaboration and local learning within the startup community. This activity is happening both between entrepreneurs and between organizations that provide support, such as mentoring and funding, to entrepreneurs. As these connections deepen, the strength of the entrepreneurial ecosystem grows. Another finding from the research is that activity-based events, where entrepreneurs have the chance to use and practice the skills needed to grow their businesses, are most useful. St. Louis provides a multitude of these activities, such as Startup Weekend, 1 Million Cups, Code Until Dawn, StartLouis, and GlobalHack. Some of these are St. Louis specific, but others have nationwide or global operations, providing important implications for other cities

    Electrical Resistivity and Thermal Expansion Measurements of URu2Si2 under Pressure

    Full text link
    We carried out simultaneous measurements of electrical resistivity and thermal expansion of the heavy-fermion compound URu2Si2 under pressure using a single crystal. We observed a phase transition anomaly between hidden (HO) and antiferromagnetic (AFM) ordered states at TM in the temperature dependence of both measurements. For the electrical resistivity, the anomaly at TM was very small compared with the distinct hump anomaly at the phase transition temperature T0 between the paramagnetic state (PM) and HO, and exhibited only a slight increase and decrease for the I // a-axis and c-axis, respectively. We estimated each excitation gap of HO, Delta_HO, and AFM, Delta_AFM, from the temperature dependence of electrical resistivity; Delta_HO and Delta_AFM have different pressure dependences from each other. On the other hand, the temperature dependence of thermal expansion exhibited a small anomaly at T0 and a large anomaly at TM. The pressure dependence of the phase boundaries of T0 and TM indicates that there is no critical end point and the two phase boundaries meet at the critical point.Comment: 4 pages, 4 figure

    Ultrafast optical nonlinearity in quasi-one-dimensional Mott-insulator Sr2CuO3{\rm Sr_2CuO_3}

    Full text link
    We report strong instantaneous photoinduced absorption (PA) in the quasi-one-dimensional Mott insulator Sr2CuO3{\rm Sr_2CuO_3} in the IR spectral region. The observed PA is to an even-parity two-photon state that occurs immediately above the absorption edge. Theoretical calculations based on a two-band extended Hubbard model explains the experimental features and indicates that the strong two-photon absorption is due to a very large dipole-coupling between nearly degenerate one- and two-photon states. Room temperature picosecond recovery of the optical transparency suggests the strong potential of Sr2CuO3{\rm Sr_2CuO_3} for all-optical switching.Comment: 10 pages, 4 figure

    Nonequilibrium orientational patterns in two-component Langmuir monolayers

    Get PDF
    A model of a phase-separating two-component Langmuir monolayer in the presence of a photo-induced reaction interconvering two components is formulated. An interplay between phase separation, orientational ordering and treaction is found to lead to a variety of nonequilibrium self-organized patterns, both stationary and traveling. Examples of the patterns, observed in numerical simulations, include flowing droplets, traveling stripes, wave sources and vortex defects.Comment: Submitted to the Physical Review

    Spin correlations in the electron-doped high-transition-temperature superconductor Nd{2-x}Ce{x}CuO{4+/-delta}

    Full text link
    High-transition-temperature (high-Tc) superconductivity develops near antiferromagnetic phases, and it is possible that magnetic excitations contribute to the superconducting pairing mechanism. To assess the role of antiferromagnetism, it is essential to understand the doping and temperature dependence of the two-dimensional antiferromagnetic spin correlations. The phase diagram is asymmetric with respect to electron and hole doping, and for the comparatively less-studied electron-doped materials, the antiferromagnetic phase extends much further with doping [1, 2] and appears to overlap with the superconducting phase. The archetypical electron-doped compound Nd{2-x}Ce{x}CuO{4\pm\delta} (NCCO) shows bulk superconductivity above x \approx 0.13 [3, 4], while evidence for antiferromagnetic order has been found up to x \approx 0.17 [2, 5, 6]. Here we report inelastic magnetic neutron-scattering measurements that point to the distinct possibility that genuine long-range antiferromagnetism and superconductivity do not coexist. The data reveal a magnetic quantum critical point where superconductivity first appears, consistent with an exotic quantum phase transition between the two phases [7]. We also demonstrate that the pseudogap phenomenon in the electron-doped materials, which is associated with pronounced charge anomalies [8-11], arises from a build-up of spin correlations, in agreement with recent theoretical proposals [12, 13].Comment: 5 pages, 4 figure

    Superconductivity of the Sr2Ca12Cu24O41Sr_2 Ca_{12} Cu_{24} O_{41} spin ladder system: Are the superconducting pairing and the spin-gap formation of the same origin?

    Full text link
    Pressure-induced superconductivity in a spin-ladder cuprate Sr2_2Ca12_{12}Cu24_{24}O41_{41} has not been studied on a microscopic level so far although the superconductivity was already discovered in 1996. We have improved high-pressure technique with using a large high-quality crystal, and succeeded in studying the superconductivity using 63^{63}Cu nuclear magnetic resonance (NMR). We found that anomalous metallic state reflecting the spin-ladder structure is realized and the superconductivity possesses a s-wavelike character in the meaning that a finite gap exists in the quasi-particle excitation: At pressure of 3.5GPa we observed two excitation modes in the normal state from the relaxation rate T1−1T_1^{-1}. One gives rise to an activation-type component in T1−1T_1^{-1}, and the other TT-linear component linking directly with the superconductivity. This gapless mode likely arises from free motion of holon-spinon bound states appearing by hole doping, and the pairing of them likely causes the superconductivity.Comment: to be published in Phys. Rev. Let

    Dynamical density-density correlations in one-dimensional Mott insulators

    Full text link
    The dynamical density-density correlation function is calculated for the one-dimensional, half-filled Hubbard model extended with nearest neighbor repulsion using the Lanczos algorithm for finite size systems and analytically for large on site repulsion compared to hopping amplitudes. At the zone boundary an excitonic feature exists for any finite nearest neighbor repulsion and exhausts most of the spectral weight, even for parameters where no exciton is visible at zero momentum.Comment: 5 pages, REVTeX, epsf, 3 postscript figure
    • …
    corecore