43 research outputs found
The WULCA consensus characterization model for water scarcity footprints: assessing impacts of water consumption based on available water remaining (AWARE)
Purpose
Life cycle assessment (LCA) has been used to assess freshwater-related impacts according to a new water footprint framework formalized in the ISO 14046 standard. To date, no consensus-based approach exists for applying this standard and results are not always comparable when different scarcity or stress indicators are used for characterization of impacts. This paper presents the outcome of a 2-year consensus building process by the Water Use in Life Cycle Assessment (WULCA), a working group of the UNEP-SETAC Life Cycle Initiative, on a water scarcity midpoint method for use in LCA and for water scarcity footprint
assessments.
Methods
In the previous work, the question to be answered was identified and different expert workshops around the world led to three different proposals. After eliminating one proposal showing low relevance for the question to be answered, the remaining two were evaluated against four criteria: stakeholder acceptance, robustness with closed basins, main normative choice, and physical meaning.
Results and discussion
The recommended method, AWARE, is based on the quantification of the relative available water remaining per area once the demand of humans and aquatic ecosystems has been met, answering the question “What is the potential to deprive another user (human or ecosystem) when consuming water in this area?” The resulting characterization factor (CF) ranges between 0.1 and 100 and can be used to calculate water scarcity footprints as defined in the ISO standard.
Conclusions
After 8 years of development on water use impact assessment methods, and 2 years of consensus building, this method represents the state of the art of the current knowledge on how to assess potential impacts from water use in LCA, assessing both human and ecosystem users’ potential deprivation, at the midpoint level, and provides a consensus-based methodology for the calculation of a water scarcity footprint as per ISO 14046
Defining freshwater as a natural resource: a framework linking water use to the area of protection natural resources
© 2019, Springer-Verlag GmbH Germany, part of Springer Nature. Purpose: While many examples have shown unsustainable use of freshwater resources, existing LCIA methods for water use do not comprehensively address impacts to natural resources for future generations. This framework aims to (1) define freshwater resource as an item to protect within the Area of Protection (AoP) natural resources, (2) identify relevant impact pathways affecting freshwater resources, and (3) outline methodological choices for impact characterization model development. Methods: Considering the current scope of the AoP natural resources, the complex nature of freshwater resources and its important dimensions to safeguard safe future supply, a definition of freshwater resource is proposed, including water quality aspects. In order to clearly define what is to be protected, the freshwater resource is put in perspective through the lens of the three main safeguard subjects defined by Dewulf et al. (2015). In addition, an extensive literature review identifies a wide range of possible impact pathways to freshwater resources, establishing the link between different inventory elementary flows (water consumption, emissions, and land use) and their potential to cause long-term freshwater depletion or degradation. Results and discussion: Freshwater as a resource has a particular status in LCA resource assessment. First, it exists in the form of three types of resources: flow, fund, or stock. Then, in addition to being a resource for human economic activities (e.g., hydropower), it is above all a non-substitutable support for life that can be affected by both consumption (source function) and pollution (sink function). Therefore, both types of elementary flows (water consumption and emissions) should be linked to a damage indicator for freshwater as a resource. Land use is also identified as a potential stressor to freshwater resources by altering runoff, infiltration, and erosion processes as well as evapotranspiration. It is suggested to use the concept of recovery period to operationalize this framework: when the recovery period lasts longer than a given period of time, impacts are considered to be irreversible and fall into the concern of freshwater resources protection (i.e., affecting future generations), while short-term impacts effect the AoP ecosystem quality and human health directly. It is shown that it is relevant to include this concept in the impact assessment stage in order to discriminate the long-term from the short-term impacts, as some dynamic fate models already do. Conclusions: This framework provides a solid basis for the consistent development of future LCIA methods for freshwater resources, thereby capturing the potential long-term impacts that could warn decision makers about potential safe water supply issues in the future
Building consensus on water use assessment of livestock production systems and supply chains: outcome and recommendations from the FAO LEAP partnership.
The FAO Livestock Environmental Assessment and Performance (LEAP) Partnership organised a Technical Advisory Group (TAG) to develop reference guidelines on water footprinting for livestock production systems and supply chains. The mandate of the TAG was to i) provide recommendations to monitor the environmental performance of feed and livestock supply chains over time so that progress towards improvement targets can be measured, ii) be applicable for feed and water demand of small ruminants, poultry, large ruminants and pig supply chains, iii) build on, and go beyond, the existing FAO LEAP guidelines and iv) pursue alignment with relevant international standards, specifically ISO 14040 (2006)/ISO 14044 (2006), and ISO 14046 (2014). The recommended guidelines on livestock water use address both impact assessment (water scarcity footprint as defined by ISO 14046, 2014) and water productivity (water use efficiency). While most aspects of livestock water use assessment have been proposed or discussed independently elsewhere, the TAG reviewed and connected these concepts and information in relation with each other and made recommendations towards comprehensive assessment of water use in livestock production systems and supply chains. The approaches to assess the quantity of water used for livestock systems are addressed and the specific assessment methods for water productivity and water scarcity are recommended. Water productivity assessment is further advanced by its quantification and reporting with fractions of green and blue water consumed. This allows the assessment of the environmental performance related to water use of a livestock-related system by assessing potential environmental impacts of anthropogenic water consumption (only ?blue water?); as well as the assessment of overall water productivity of the system (including ?green? and ?blue water? consumption). A consistent combination of water productivity and water scarcity footprint metrics provides a complete picture both in terms of potential productivity improvements of the water consumption as well as minimizing potential environmental impacts related to water scarcity. This process resulted for the first time in an international consensus on water use assessment, including both the life-cycle assessment community with the water scarcity footprint and the water management community with water productivity metrics. Despite the main focus on feed and livestock production systems, the outcomes of this LEAP TAG are also applicable to many other agriculture sectors
Life Cycle Impact Assessment
International audienceThis chapter is dedicated to the third phase of an LCA study, the Life Cycle Impact Assessment (LCIA) where the life cycle inventory's information on elementary flows is translated into environmental impact scores. In contrast to the three other LCA phases, LCIA is in practice largely automated by LCA software, but the underlying principles, models and factors should still be well understood by practitioners to ensure the insight that is needed for a qualified interpretation of the results.This chapter teaches the fundamentals of LCIA and opens the black box of LCIA with its characterisation models and factors to inform the reader about: (1) the main purpose and characteristics of LCIA, (2) the mandatory and optional steps of LCIA according to the ISO standard, and (3) the science and methods underlying the assessment for each environmental impact category. For each impact category, the reader is taken through (a) the underlying environmental problem, (b) the underlying environmental mechanism and its fundamental modelling principles, (c) the main anthropogenic sources causing the problem and (d) the main methods available in LCIA. An annex to this book offers a comprehensive qualitative comparison of the main elements and properties of the most widely used and also the latest LCIAmethods for each impact category, to further assist the advanced practitioner to make an informed choice between LCIA methods
Comparison of Different Monetization Methods in LCA: A Review
Different LCA methods based on monetization of environmental impacts are available. Therefore, relevant monetization methods, namely Ecovalue12, Stepwise2006, LIME3, Ecotax, EVR, EPS, the Environmental Prices Handbook, Trucost and the MMG-Method were compared quantitatively and qualitatively, yielding results for 18 impact categories. Monetary factors for the same impact category range mostly between two orders of magnitude for the assessed methods, with some exceptions (e.g., mineral resources with five orders of magnitude). Among the qualitative criteria, per capita income, and thus the geographical reference, has the biggest influence on the obtained monetary factors. When the monetization methods were applied to the domestic yearly environmental damages of an average EU citizen, their monetary values ranged between 7941.13 €/capita (Ecotax) and 224.06 €/capita (LIME3). The prioritization of impact categories varies: Stepwise and Ecovalue assign over 50% of the per capita damages to climate change, while EPS and LIME3 assign around 50% to mineral and fossil resource use. Choices regarding the geographical reference, the Areas of Protection included, cost perspectives and the approach to discounting strongly affect the magnitude of the monetary factors. Therefore, practitioners should choose monetization methods with care and potentially apply varying methods to assess the robustness of their results.BMBF, 033W102E, RESZ - Verbundvorhaben: R2Q - RessourcenPlan im Quartier - Teilprojekt 5: Ganzheitliche Bewertung der Ressourceneffizienz von StadtquartierenTU Berlin, Open-Access-Mittel – 202
Comparison of Different Monetization Methods in LCA: A Review
Different LCA methods based on monetization of environmental impacts are available. Therefore, relevant monetization methods, namely Ecovalue12, Stepwise2006, LIME3, Ecotax, EVR, EPS, the Environmental Prices Handbook, Trucost and the MMG-Method were compared quantitatively and qualitatively, yielding results for 18 impact categories. Monetary factors for the same impact category range mostly between two orders of magnitude for the assessed methods, with some exceptions (e.g., mineral resources with five orders of magnitude). Among the qualitative criteria, per capita income, and thus the geographical reference, has the biggest influence on the obtained monetary factors. When the monetization methods were applied to the domestic yearly environmental damages of an average EU citizen, their monetary values ranged between 7941.13 €/capita (Ecotax) and 224.06 €/capita (LIME3). The prioritization of impact categories varies: Stepwise and Ecovalue assign over 50% of the per capita damages to climate change, while EPS and LIME3 assign around 50% to mineral and fossil resource use. Choices regarding the geographical reference, the Areas of Protection included, cost perspectives and the approach to discounting strongly affect the magnitude of the monetary factors. Therefore, practitioners should choose monetization methods with care and potentially apply varying methods to assess the robustness of their results