57 research outputs found

    Crater Formation and Deuterium Production in Laser Irradiation of Polymers with Implanted Nano-antennas

    Full text link
    Recent validation experiments on laser irradiation of polymer foils with and without implanted golden nano-particles are discussed. First we analyze characteristics of craters, formed in the target after its interaction with laser beam. Preliminary experimental results show significant production of deuterons when both the energy of laser pulse and concentration of nano-particles are high enough. We consider the deuteron production via the nuclear transmutation reactions p+Cd+Xp+C\rightarrow d+X where protons are accelerated by Coulomb field, generated in the target plasma. We argue that maximal proton energy can be above threshold values for these reactions and the deuteron yield may noticeably increase due to presence of nano-particles.Comment: 9 pages, 4 figure

    Laser Wake Field Collider

    Get PDF
    Recently NAno-Plasmonic, Laser Inertial Fusion Experiments (NAPLIFE) were proposed, as an improved way to achieve laser driven fusion. The improvement is the combination of two basic research discoveries: (i) the possibility of detonations on space-time hyper-surfaces with time-like normal (i.e. simultaneous detonation in a whole volume) and (ii) to increase this volume to the whole target, by regulating the laser light absorption using nanoshells or nanorods as antennas. These principles can be realized in a one dimensional configuration, in the simplest way with two opposing laser beams as in particle colliders. Such, opposing laser beam experiments were also performed recently. Here we study the consequences of the Laser Wake Field Acceleration (LWFA) if we experience it in a colliding laser beam set-up. These studies can be applied to laser driven fusion, but also to other rapid phase transition, combustion, or ignition studies in other materials.publishedVersio
    corecore