105 research outputs found

    Safety profile of paediatric COVID-19 vaccines: An analysis of the US Vaccine Adverse Event Reporting System

    Get PDF
    Aim: To provide further evidence on the safety profile of COVID-19 vaccines in paediatrics by analysing the spontaneous reports of adverse effects related to these vaccines.Methods: Reports related to US paediatric population (from 0 to 17 years) vaccinated with authorised COVID-19 vaccines were extracted from Vaccine Adverse Event Reporting System from December 2020 to 17 November 2022. We conducted a descriptive analysis of Adverse Events Following Immunization (AEFI), calculating reporting rate of serious AEFIs and focusing on myocarditis and Guillain-Barre Syndrome after mRNA COVID-19 vaccines.Results: Overall, 52 720 reports were retrieved: 77% (40541)-Pfizer-BioNTech, 19% (10083)-Moderna, a small proportion for other vaccines 4% (2096). Most of AEFIs were non-serious and listed in corresponding SPCs. Of serious AEFIs, 96% were related to the Pfizer-BioNTech vaccine. Roughly 91% (47874) were related to people from 6 to 17 years, a small percentage of 9% (4773) to the younger group (0-5 years). In both groups, most of the reports were related to mRNA vaccines and the percentage of AEFIs experienced by females were similar to males.Conclusions: Data showed that events most frequently reported were non-serious and listed in the corresponding SPCs, extending the evidence of safety of COVID-19 vaccines authorised in the United States in children

    Hormonal Signal Amplification Mediates Environmental Conditions during Development and Controls an Irreversible Commitment to Adulthood

    Get PDF
    Many animals can choose between different developmental fates to maximize fitness. Despite the complexity of environmental cues and life history, different developmental fates are executed in a robust fashion. The nematode Caenorhabditis elegans serves as a powerful model to examine this phenomenon because it can adopt one of two developmental fates (adulthood or diapause) depending on environmental conditions. The steroid hormone dafachronic acid (DA) directs development to adulthood by regulating the transcriptional activity of the nuclear hormone receptor DAF-12. The known role of DA suggests that it may be the molecular mediator of environmental condition effects on the developmental fate decision, although the mechanism is yet unknown. We used a combination of physiological and molecular biology techniques to demonstrate that commitment to reproductive adult development occurs when DA levels, produced in the neuroendocrine XXX cells, exceed a threshold. Furthermore, imaging and cell ablation experiments demonstrate that the XXX cells act as a source of DA, which, upon commitment to adult development, is amplified and propagated in the epidermis in a DAF-12 dependent manner. This positive feedback loop increases DA levels and drives adult programs in the gonad and epidermis, thus conferring the irreversibility of the decision. We show that the positive feedback loop canalizes development by ensuring that sufficient amounts of DA are dispersed throughout the body and serves as a robust fate-locking mechanism to enforce an organism-wide binary decision, despite noisy and complex environmental cues. These mechanisms are not only relevant to C. elegans but may be extended to other hormonal-based decision-making mechanisms in insects and mammals

    Steroids as Central Regulators of Organismal Development and Lifespan

    Get PDF
    Larvae of the nematode Caenorhabditis elegans must choose between reproductive development and dauer diapause. This decision is based on sensing of environmental inputs and dauer pheromone, a small molecule signal that serves to monitor population density. These signals are integrated via conserved neuroendocrine pathways that converge on steroidal ligands of the nuclear receptor DAF-12, a homolog of the mammalian vitamin D receptor and liver X receptor. DAF-12 acts as the main switch between gene expression programs that drive either reproductive development or dauer entry. Extensive studies in the past two decades demonstrated that biosynthesis of two bile acid-like DAF-12 ligands, named dafachronic acids (DA), controls developmental fate. In this issue of PLoS Biology, Wollam et al. showed that a conserved steroid-modifying enzyme, DHS-16, introduces a key feature in the structures of the DAF-12 ligands, closing a major gap in the DA biosynthesis pathway. The emerging picture of DA biosynthesis in C. elegans enables us to address a key question in the field: how are complex environmental signals integrated to enforce binary, organism-wide decisions on developmental fate? Schaedel et al. demonstrated that pheromone and DA serve as competing signals, and that a positive feedback loop based on regulation of DA biosynthesis ensures organism-wide commitment to reproductive development. Considering that many components of DA signaling are highly conserved, ongoing studies in C. elegans may reveal new aspects of bile acid function and lifespan regulation in mammals

    Mitochondrial Oxidative Stress Alters a Pathway in Caenorhabditis elegans Strongly Resembling That of Bile Acid Biosynthesis and Secretion in Vertebrates

    Get PDF
    Mammalian bile acids (BAs) are oxidized metabolites of cholesterol whose amphiphilic properties serve in lipid and cholesterol uptake. BAs also act as hormone-like substances that regulate metabolism. The Caenorhabditis elegans clk-1 mutants sustain elevated mitochondrial oxidative stress and display a slow defecation phenotype that is sensitive to the level of dietary cholesterol. We found that: 1) The defecation phenotype of clk-1 mutants is suppressed by mutations in tat-2 identified in a previous unbiased screen for suppressors of clk-1. TAT-2 is homologous to ATP8B1, a flippase required for normal BA secretion in mammals. 2) The phenotype is suppressed by cholestyramine, a resin that binds BAs. 3) The phenotype is suppressed by the knock-down of C. elegans homologues of BA–biosynthetic enzymes. 4) The phenotype is enhanced by treatment with BAs. 5) Lipid extracts from C. elegans contain an activity that mimics the effect of BAs on clk-1, and the activity is more abundant in clk-1 extracts. 6) clk-1 and clk-1;tat-2 double mutants show altered cholesterol content. 7) The clk-1 phenotype is enhanced by high dietary cholesterol and this requires TAT-2. 8) Suppression of clk-1 by tat-2 is rescued by BAs, and this requires dietary cholesterol. 9) The clk-1 phenotype, including the level of activity in lipid extracts, is suppressed by antioxidants and enhanced by depletion of mitochondrial superoxide dismutases. These observations suggest that C. elegans synthesizes and secretes molecules with properties and functions resembling those of BAs. These molecules act in cholesterol uptake, and their level of synthesis is up-regulated by mitochondrial oxidative stress. Future investigations should reveal whether these molecules are in fact BAs, which would suggest the unexplored possibility that the elevated oxidative stress that characterizes the metabolic syndrome might participate in disease processes by affecting the regulation of metabolism by BAs

    DAF-12 Regulates a Connected Network of Genes to Ensure Robust Developmental Decisions

    Get PDF
    The nuclear receptor DAF-12 has roles in normal development, the decision to pursue dauer development in unfavorable conditions, and the modulation of adult aging. Despite the biologic importance of DAF-12, target genes for this receptor are largely unknown. To identify DAF-12 targets, we performed chromatin immunoprecipitation followed by hybridization to whole-genome tiling arrays. We identified 1,175 genomic regions to be bound in vivo by DAF-12, and these regions are enriched in known DAF-12 binding motifs and act as DAF-12 response elements in transfected cells and in transgenic worms. The DAF-12 target genes near these binding sites include an extensive network of interconnected heterochronic and microRNA genes. We also identify the genes encoding components of the miRISC, which is required for the control of target genes by microRNA, as a target of DAF-12 regulation. During reproductive development, many of these target genes are misregulated in daf-12(0) mutants, but this only infrequently results in developmental phenotypes. In contrast, we and others have found that null daf-12 mutations enhance the phenotypes of many miRISC and heterochronic target genes. We also find that environmental fluctuations significantly strengthen the weak heterochronic phenotypes of null daf-12 alleles. During diapause, DAF-12 represses the expression of many heterochronic and miRISC target genes, and prior work has demonstrated that dauer formation can suppress the heterochronic phenotypes of many of these target genes in post-dauer development. Together these data are consistent with daf-12 acting to ensure developmental robustness by committing the animal to adult or dauer developmental programs despite variable internal or external conditions

    Risk of hospitalization for heart failure in patients with type 2 diabetes newly treated with DPP-4 inhibitors or other oral glucose-lowering medications: A retrospective registry study on 127,555 patients from the Nationwide OsMed Health-DB Database

    Get PDF
    Aims Oral glucose-lowering medications are associated with excess risk of heart failure (HF). Given the absence of comparative data among drug classes, we performed a retrospective study in 32 Health Services of 16 Italian regions accounting for a population of 18 million individuals, to assess the association between HF risk and use of sulphonylureas, DPP-4i, and glitazones. Methods and results We extracted data on patients with type 2 diabetes who initiated treatment with DPP-4i, thiazolidinediones, or sulphonylureas alone or in combination with metformin during an accrual time of 2 years. The endpoint was hospitalization for HF (HHF) occurring after the first 6 months of therapy, and the observation was extended for up to 4 years. A total of 127 555 patients were included, of whom 14.3% were on DPP-4i, 72.5% on sulphonylurea, 13.2% on thiazolidinediones, with average 70.7% being on metformin as combination therapy. Patients in the three groups differed significantly for baseline characteristics: age, sex, Charlson index, concurrent medications, and previous cardiovascular events. During an average 2.6-year follow-up, after adjusting for measured confounders, use of DPP-4i was associated with a reduced risk of HHF compared with sulphonylureas [hazard ratio (HR) 0.78; 95% confidence interval (CI) 0.62-0.97; P = 0.026]. After propensity matching, the analysis was restricted to 39 465 patients, and the use of DPP-4i was still associated with a lower risk of HHF (HR 0.70; 95% CI 0.52-0.94; P = 0.018). Conclusion In a very large observational study, the use of DPP-4i was associated with a reduced risk of HHF when compared with sulphonylureas

    High-throughput profiling of caenorhabditis elegans starvation-responsive microRNAs

    Get PDF
    MicroRNAs (miRNAs) are non-coding RNAs of ~22 nucleotides in length that regulate gene expression by interfering with the stability and translation of mRNAs. Their expression is regulated during development, under a wide variety of stress conditions and in several pathological processes. In nature, animals often face feast or famine conditions. We observed that subjecting early L4 larvae from Caenorhabditis elegans to a 12-hr starvation period produced worms that are thinner and shorter than well-fed animals, with a decreased lipid accumulation, diminished progeny, reduced gonad size, and an increased lifespan. Our objective was to identify which of the 302 known miRNAs of C. elegans changed their expression under starvation conditions as compared to well-fed worms by means of deep sequencing in early L4 larvae. Our results indicate that 13 miRNAs (miR-34-3p, the family of miR-35-3p to miR-41-3p, miR-39-5p, miR-41-5p, miR-240-5p, miR-246-3p and miR-4813-5p) were upregulated, while 2 miRNAs (let-7-3p and miR-85-5p) were downregulated in 12-hr starved vs. well-fed early L4 larvae. Some of the predicted targets of the miRNAs that changed their expression in starvation conditions are involved in metabolic or developmental process. In particular, miRNAs of the miR-35 family were upregulated 6-20 fold upon starvation. Additionally, we showed that the expression of gld-1, important in oogenesis, a validated target of miR-35-3p, was downregulated when the expression of miR-35-3p was upregulated. The expression of another reported target, the cell cycle regulator lin-23, was unchanged during starvation. This study represents a starting point for a more comprehensive understanding of the role of miRNAs during starvation in C. elegans
    • …
    corecore