29 research outputs found

    Regulation of membrane ruffling by polarized STIM1 and ORAI1in cortactin-rich domains

    Get PDF
    La movilidad celular y la migración requieren la reorganización del citoesqueleto cortical en el borde principal de las células y la entrada de Ca2 + extracelular es esencial para esta reorganización. Sin embargo, la naturaleza molecular de los reguladores de esta vía es desconocida. Este trabajo contribuye a comprender el papel de STIM1 y ORAI1 en la promoción de la ondulación de la membrana al mostrar que la fosfo-STIM1 se localiza en el borde principal de las células, y que tanto phospho-STIM1 como ORAI1 se localizan conjuntamente con la cortactina (CTTN), un regulador del citoesqueleto en las zonas de rizo de la membrana. Las líneas celulares STIM1-KO y ORAI1-KO se generaron mediante la edición del genoma CRISPR / Cas9 en células U2OS. En ambos casos, las células KO presentaron una reducción notable de la entrada de Ca2 + operada por el almacén (SOCE) que se rescató mediante la expresión de STIM1-mCherry y ORAI1-mCherry. Estos resultados demostraron que SOCE regula la deformación de la membrana en el borde anterior de las células. Por otra parte, ORAI1 endógeno y ORAI1-GFP sobreexpresado coinmuno precipitado con CTTN endógeno. Este último resultado, además del fenotipo de las células KO, la preservación de la co-localización de ORAI1-CTTN durante el fruncido, y la inhibición de la rizo de la membrana por parte del inhibidor del canal de Ca2 + SKF96365, apoya aún más un vínculo funcional entre el SOCE y el fruncido de la membrana.Cell motility and migration requires the reorganization of the cortical cytoskeleton at the leading edge of cells and extracellular Ca2+ entry is essential for this reorganization. However the molecular nature of the regulators of this pathway is unknown. This work contributes to understanding the role of STIM1 and ORAI1 in the promotion of membrane ruffling by showing that phospho-STIM1 localizes at the leading edge of cells, and that both phospho-STIM1 and ORAI1 co-localize with cortactin (CTTN), a regulator of the cytoskeleton at membrane ruffling areas. STIM1-KO and ORAI1-KO cell lines were generated by CRISPR/Cas9 genome editing in U2OS cells. In both cases, KO cells presented a notable reduction of store-operated Ca2+ entry (SOCE) that was rescued by expression of STIM1-mCherry and ORAI1-mCherry. These results demonstrated that SOCE regulates membrane ruffling at the leading edge of cells. Moreover, endogenous ORAI1 and overexpressed ORAI1-GFP co-immuno precipitated with endogenous CTTN. This latter result, in addition to the KO cells’ phenotype, the preservation of ORAI1-CTTN co-localization during ruffling, and the inhibition of membrane ruffling g by the Ca2+- channel inhibitor SKF96365, further supports a functional link between SOCE and membrane ruffling.• Ministerio de Economía y Competitividad y Fondo Social Europeo. Becas BFU2011-22798 y BFU2014-52401-P, para Francisco Javier Martín Romero • Consejo de Investigación Médica. Beca MC_UU_12016 / 2, para Darío R. Alessi • Ministerio de Economía y Competitividad. Beca BES-2012-052061, para Aida María López Guerrero • Gobierno de Extremadura. Ayuda PD10081, para Patricia Tomás Martín • Ministerio de Educación, Cultura y Deporte. Beca FPU13 / 03430, para Carlos Pascual Caro • Consejo de Investigación Médica. Ayuda MR / K015869 / 1, para Graeme Ball • EMBO. Beca ASTF-311-2014, para Eulalia Pozo Guisado • Ministerio de Educación, Cultura Española y Deporte. Beca PRX14 / 00176, para Francisco Javier Martín RomeropeerReviewe

    The boron-oxygen core of borinate esters is responsible for the store-operated calcium entry potentiation ability

    Get PDF
    International audienceBACKGROUND: Store-Operated Calcium Entry (SOCE) is the major Ca2+ ion entry pathway in lymphocytes and is responsible of a severe combined immunodeficiency (SCID) when deficient. It has recently been observed or highlighted in other cell types such as myoblasts and neurons, suggesting a wider physiological role of this pathway. Whereas Orai1 protein is considered to be the channel allowing the SOCE in T cells, it is hypothesized that other proteins like TRPC could associate with Orai1 to form SOCE with different pharmacology and kinetics in other cell types. Unraveling SOCE cell functions requires specific effectors to be identified, just as dihydropyridines were crucial for the study of Ca2+ voltage-gated channels, or spider/snake toxins for other ion channel classes. To identify novel SOCE effectors, we analyzed the effects of 2-aminoethyl diphenylborinate (2-APB) and its analogues. 2-APB is a molecule known to both potentiate and inhibit T cell SOCE, but it is also an effector of TRP channels and endoplasmic reticulum Ca2+-ATPase. RESULTS: A structure-function analysis allowed to discover that the boron-oxygen core present in 2-APB and in the borinate ester analogues is absolutely required for the dual effects on SOCE. Indeed, a 2-APB analogue where the boron-oxygen core is replaced by a carbon-phosphorus core is devoid of potentiating capacity (while retaining inhibition capacity), highlighting the key role of the boron-oxygen core present in borinate esters for the potentiation function. However, dimesityl borinate ester, a 2-APB analogue with a terminal B-OH group showed an efficient inhibitory ability, without any potentiating capacity. The removal or addition of phenyl groups respectively decrease or increase the efficiency of the borinate esters to potentiate and inhibit the SOCE. mRNA expression revealed that Jurkat T cells mainly expressed Orai1, and were the more sensitive to 2-APB modulation of SOCE. CONCLUSIONS: This study allows the discovery of new boron-oxygen core containing compounds with the same ability as 2-APB to both potentiate and inhibit the SOCE of different leukocyte cell lines. These compounds could represent new tools to characterize the different types of SOCE and the first step in the development of new immunomodulators

    Orai/CRACM1 and KCa3.1 ion channels interact

    Get PDF
    open access articleBACKGROUND: Orai/CRACM1 ion channels provide the major Ca(2+) influx pathway for FcεRI-dependent human lung mast cell (HLMC) mediator release. The Ca(2+)-activated K(+) channel KCa3.1 modulates Ca(2+) influx and the secretory response through hyperpolarisation of the plasma membrane. We hypothesised that there is a close functional and spatiotemporal interaction between these Ca(2+)- and K(+)-selective channels. RESULTS: Activation of FcεRI-dependent HLMC KCa3.1 currents was dependent on the presence of extracellular Ca(2+), and attenuated in the presence of the selective Orai blocker GSK-7975A. Currents elicited by the KCa3.1 opener 1-EBIO were also attenuated by GSK-7975A. The Orai1 E106Q dominant-negative mutant ablated 1-EBIO and FcεRI-dependent KCa3.1 currents in HLMCs. Orai1 but not Orai2 was shown to co-immunoprecipitate with KCa3.1 when overexpressed in HEK293 cells, and Orai1 and KCa3.1 were seen to co-localise in the HEK293 plasma membrane using confocal microscopy. CONCLUSION: KCa3.1 activation in HLMCs is highly dependent on Ca(2+) influx through Orai1 channels, mediated via a close spatiotemporal interaction between the two channels

    Calcium channels and pumps: importance during lactation as potential targets for breast cancer

    No full text
    The enrichment of milk with calcium is critical for the survival of mammals after birth. The process of transfer of calcium ions from the maternal blood supply into milk occurs through mammary alveolar epithelial cells. Recent research has provided deep mechanistic insight into these processes with candidates for the critical pathways involved in calcium transport identified. These proteins include the store-operated Ca entry component Orai1 (basolateral Ca influx), the secretory pathway Ca-ATPase isoform 2 (SPCA2, secretion of Ca), and the plasma membrane Ca-ATPase isoform 2 (PMCA2, apical membrane Ca efflux). Increased expression of Orai1, SPCA2, and PMCA2 has also been identified in breast cancer cells; however, the remodeling of these targets often demonstrates selectivity for specific clinical and/or molecular subtypes. Silencing of these targets has identified roles for these proteins in the proliferation and/or migration of some breast cancer cell lines

    Remodeling of calcium entry pathways in cancer

    No full text
    Ca(2+) entry pathways play important roles in control of many cellular functions, including long-term proliferation, migration and cell death. In recent years, it is becoming increasingly clear that, in some types of tumors, remodeling of Ca(2+) entry pathways could contribute to cancer hallmarks such as excessive proliferation, cell migration and invasion as well as resistance to cell death or survival. In this chapter we briefly review findings related to remodeling of Ca(2+) entry pathways in cancer with emphasis on the mechanisms that contribute to increased store-operated Ca(2+) entry (SOCE) and store-operated currents (SOCs) in colorectal cancer cells. Finally, since SOCE appears critically involved in colon tumorogenesis, the inhibition of SOCE by aspirin and other NSAIDs and its possible contribution to colon cancer chemoprevention is reviewed.This work has been funded by grants from Ministerio de Economía y competitividad, Spain (BFU2012-37146) and Junta de Castilla y León, Spain [BIO/VA46/14]. DS was supported by a predoctoral fellowship from the JAE program, National Research Council (CSIC), Spain.Peer Reviewe
    corecore