9 research outputs found

    Imaginal Discs – A New Source of Chromosomes for Genome Mapping of the Yellow Fever Mosquito Aedes aegypti

    Get PDF
    Dengue fever is an emerging health threat to as much as half of the human population around the world. No vaccines or drug treatments are currently available. Thus, disease prevention is largely based on efforts to control its major mosquito vector Ae. aegypti. Novel vector control strategies, such as population replacement with pathogen-incompetent transgenic mosquitoes, rely on detailed knowledge of the genome organization for the mosquito. However, the current genome assembly of Ae. aegypti is highly fragmented and requires additional physical mapping onto chromosomes. The absence of readable polytene chromosomes makes genome mapping for this mosquito extremely challenging. In this study, we discovered and investigated a new source of chromosomes useful for the cytogenetic analysis in Ae. aegypti – mitotic chromosomes from imaginal discs of 4th instar larvae. Using natural banding patterns of these chromosomes, we developed a new band-based approach for physical mapping of DNA probes to the precise chromosomal positions. Further application of this approach for genome mapping will greatly enhance the utility of the existing draft genome sequence assembly for Ae. aegypti and thereby facilitate application of advanced genome technologies for investigating and developing novel genetic control strategies for dengue transmission

    Cytogenetic analysis of three species of Pseudacteon (Diptera, Phoridae) parasitoids of the fire ants using standard and molecular techniques

    Get PDF
    Pseudacteon flies, parasitoids of worker ants, are being intensively studied as potentially effective agents in the biological control of the invasive pest fire ant genus Solenopsis (Hymenoptera: Formicidae). This is the first attempt to describe the karyotype of P. curvatus Borgmeier, P. nocens Borgmeier and P. tricuspis Borgmeier. The three species possess 2n = 6; chromosomes I and II were metacentric in the three species, but chromosome pair III was subtelocentric in P. curvatus and P. tricuspis, and telocentric in P. nocens. All three species possess a C positive band in chromosome II, lack C positive heterochromatin on chromosome I, and are mostly differentiated with respect to chromosome III. P. curvatus and P. tricuspis possess a C positive band, but at different locations, whereas this band is absent in P. nocens. Heterochromatic bands are neither AT nor GC rich as revealed by fluorescent banding. In situ hybridization with an 18S rDNA probe revealed a signal on chromosome II in a similar location to the C positive band in the three species. The apparent lack of morphologically distinct sex chromosomes is consistent with proposals of environmental sex determination in the genus. Small differences detected in chromosome length and morphology suggests that chromosomes have been highly conserved during the evolutionary radiation of Pseudacteon. Possible mechanisms of karyotype evolution in the three species are suggested
    corecore