31 research outputs found

    Multi-spectral vascular oximetry of rat dorsal spinal cord

    Get PDF
    We describe a visible-light multi-spectral system for vascular oximetry studies that can be implemented in lowand middle-income countries, using a low-cost electronics and optical elements, for instance a Raspberry Pi, a Pi camera under a resolution of 5-megapixel, 2592x1944-pixel resolution, and four different light sources at 480nm, 532nm, 593nm and 610nm on a singular structured illumination area. It is designed to quantify the vascular oxygen saturation change of the rat dorsal spinal cord, which uses a Phyton custom application that synchronize all elements to execute the imaging process in one system, powered by a portable rechargeable 5V battery pack. Aimed for drug discovery, tracking disease progression and understanding of progressive and degenerative diseases. By replacing expensive and bulky imaging systems

    Optimizing ExoMars rover remote sensing multispectral science : cross-rover comparison using laboratory and orbital data

    Get PDF
    PMG, RBS, CRC, and EJA thank the UK Space Agency for support (grant ST/T001747/1). SM acknowledges a UK Science and Technology Facilities Council (STFC) PhD studentship (grant ST/R504961/1).Multispectral imaging instruments have been core payload components of Mars lander and rover missions for several decades. In order to place into context the future performance of the ExoMars Rosalind Franklin rover, we have carried out a detailed analysis of the spectral performance of three visible and near-infrared (VNIR) multispectral instruments. We have determined the root mean square error (RMSE) between the expected multispectral sampling of the instruments and high-resolution spectral reflectance data, using both laboratory spectral libraries and Mars orbital hyperspectral data. ExoMars Panoramic Camera (PanCam) and Mars2020 Perseverance Mastcam-Z instruments have similar values of RMSE, and are consistently lower than for Mars Science Laboratory Mastcam, across both laboratory and orbital remote sensing data sets. The performance across mineral groups is similar across all instruments, with the lowest RMSE values for hematite, basalt, and basaltic soil. Minerals with broader, or absent, absorption features in these visible wavelengths, such as olivine, saponite, and vermiculite have overall larger RMSE values. Instrument RMSE as a function of filter wavelength and bandwidth suggests that spectral parameters that use shorter wavelengths are likely to perform better. Our simulations of the spectral performance of the PanCam instrument will allow the future use of targeted filter selection during ExoMars 2022 Rosalind Franklin operations on Mars.Publisher PDFPeer reviewe

    Optical coherence tomography—current technology and applications in clinical and biomedical research

    Get PDF

    Optimizing ExoMars rover remote sensing multispectral science:cross-rover comparison using laboratory and orbital data

    No full text
    Multispectral imaging instruments have been core payload components of Mars lander and rover missions for several decades. In order to place into context the future performance of the ExoMars Rosalind Franklin rover, we have carried out a detailed analysis of the spectral performance of three visible and near-infrared (VNIR) multispectral instruments. We have determined the root mean square error (RMSE) between the expected multispectral sampling of the instruments and high-resolution spectral reflectance data, using both laboratory spectral libraries and Mars orbital hyperspectral data. ExoMars Panoramic Camera (PanCam) and Mars2020 Perseverance Mastcam-Z instruments have similar values of RMSE, and are consistently lower than for Mars Science Laboratory Mastcam, across both laboratory and orbital remote sensing data sets. The performance across mineral groups is similar across all instruments, with the lowest RMSE values for hematite, basalt, and basaltic soil. Minerals with broader, or absent, absorption features in these visible wavelengths, such as olivine, saponite, and vermiculite have overall larger RMSE values. Instrument RMSE as a function of filter wavelength and bandwidth suggests that spectral parameters that use shorter wavelengths are likely to perform better. Our simulations of the spectral performance of the PanCam instrument will allow the future use of targeted filter selection during ExoMars 2022 Rosalind Franklin operations on Mars
    corecore