
1.  Introduction
The scientific objectives of the ExoMars Rosalind Franklin rover mission are to (a) search for signs of past and 
present life on Mars, and (b) to characterize the geochemical environment as a function of depth in the shallow 
subsurface (Vago et  al.,  2015,  2017). The primary remote sensing instrument on previous Mars landers and 
rovers has been multispectral imagers operating in the visible and near-infrared (VNIR) wavelengths (e.g., Bell 
et al., 2019; Gunn & Cousins, 2016). In addition to allowing geomorphological interpretations of the surface, the 
acquisition of in situ spectral information can help determine the composition of the environment close to the 
lander or rover. Although diagnostic spectral features of planetary surfaces tend to occur at longer IR wavelengths 
(e.g., Clark, 2019; Mustard & Glotch, 2019; Rossman & Ehlmann, 2019), there are many examples of studies 
using VNIR multispectral imaging instruments to derive important compositional information about both crys-
talline and amorphous materials (e.g., Farrand et al., 2016), which not only allow deeper scientific investigations 

Abstract  Multispectral imaging instruments have been core payload components of Mars lander and rover 
missions for several decades. In order to place into context the future performance of the ExoMars Rosalind 
Franklin rover, we have carried out a detailed analysis of the spectral performance of three visible and near-
infrared (VNIR) multispectral instruments. We have determined the root mean square error (RMSE) between 
the expected multispectral sampling of the instruments and high-resolution spectral reflectance data, using 
both laboratory spectral libraries and Mars orbital hyperspectral data. ExoMars Panoramic Camera (PanCam) 
and Mars2020 Perseverance Mastcam-Z instruments have similar values of RMSE, and are consistently lower 
than for Mars Science Laboratory Mastcam, across both laboratory and orbital remote sensing data sets. The 
performance across mineral groups is similar across all instruments, with the lowest RMSE values for hematite, 
basalt, and basaltic soil. Minerals with broader, or absent, absorption features in these visible wavelengths, such 
as olivine, saponite, and vermiculite have overall larger RMSE values. Instrument RMSE as a function of filter 
wavelength and bandwidth suggests that spectral parameters that use shorter wavelengths are likely to perform 
better. Our simulations of the spectral performance of the PanCam instrument will allow the future use of 
targeted filter selection during ExoMars 2022 Rosalind Franklin operations on Mars.

Plain Language Summary  Mars landers and rovers tend to carry camera instruments that record 
images at a range of different wavelengths. Such multispectral instruments can be used to help determine the 
composition of the surface, and guide both scientific analyses and mission operations. Subtle differences in 
the exact wavelengths that are sampled on different instruments mean that comparison across missions is not 
straightforward. In this study we simulate the performance of three different multispectral camera instruments: 
ExoMars Panoramic Camera (PanCam), Mars Science Laboratory Mastcam, and Mars2020 Perseverance 
Mastcam-Z. We compare the ability of each instrument to determine the true spectral response for both 
laboratory data compiled into spectral libraries, and for hyperspectral data recorded of the surface of Mars. 
We find that the choice of filters for PanCam and Mastcam-Z result in similar performance between these 
two instruments, with both apparently performing better than Mastcam. This study will allow more confident 
comparison of results from across instruments, and help the development of best practice for the future use of 
the ExoMars PanCam instrument.

GRINDROD ET AL.

© 2022 The Authors. Earth and Space 
Science published by Wiley Periodicals 
LLC on behalf of American Geophysical 
Union.
This is an open access article under 
the terms of the Creative Commons 
Attribution License, which permits use, 
distribution and reproduction in any 
medium, provided the original work is 
properly cited.

Optimizing ExoMars Rover Remote Sensing Multispectral 
Science: Cross-Rover Comparison Using Laboratory and 
Orbital Data
P. M. Grindrod1  , R. B. Stabbins1, S. Motaghian1, E. J. Allender2  , C. R. Cousins2  , 
M. S. Rice3  , and K. Stephan4 

1Department of Earth Sciences, Natural History Museum, London, UK, 2School of Earth & Environmental Sciences, 
University of St Andrews, St Andrews, UK, 3Department of Geology, Western Washington University, Bellingham, WA, 
USA, 4Deutsches Zentrum für Luft- und Raumfahrt (DLR), Berlin, Germany

Key Points:
•	 �Comparison of the multispectral 

response of three Mars rover 
instruments, using spectral libraries 
and orbital hyperspectral data

•	 �Root mean square error analysis can 
be used to assess relative performance 
of different instruments

•	 �ExoMars PanCam and Mars2020 
Mastcam-Z have similar performance, 
with both better than MSL Mastcam

Supporting Information:
Supporting Information may be found in 
the online version of this article.

Correspondence to:
P. M. Grindrod,
p.grindrod@nhm.ac.uk

Citation:
Grindrod, P. M., Stabbins, R. B., 
Motaghian, S., Allender, E. J., Cousins, 
C. R., Rice, M. S., & Stephan, K. 
(2022). Optimizing ExoMars rover 
remote sensing multispectral science: 
Cross-rover comparison using laboratory 
and orbital data. Earth and Space 
Science, 9, e2022EA002243. https://doi.
org/10.1029/2022EA002243

Received 26 JAN 2022
Accepted 20 MAY 2022

Author Contributions:
Conceptualization: P. M. Grindrod, R. 
B. Stabbins
Formal analysis: P. M. Grindrod, R. B. 
Stabbins, S. Motaghian
Funding acquisition: P. M. Grindrod, C. 
R. Cousins
Investigation: R. B. Stabbins, M. S. Rice
Methodology: P. M. Grindrod, R. B. 
Stabbins, S. Motaghian, E. J. Allender, C. 
R. Cousins
Project Administration: P. M. Grindrod, 
C. R. Cousins

10.1029/2022EA002243
RESEARCH ARTICLE

1 of 17

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-0934-5131
https://orcid.org/0000-0002-0052-7895
https://orcid.org/0000-0002-3954-8079
https://orcid.org/0000-0002-8370-4139
https://orcid.org/0000-0003-1009-0145
https://doi.org/10.1029/2022EA002243
https://doi.org/10.1029/2022EA002243
https://doi.org/10.1029/2022EA002243
https://doi.org/10.1029/2022EA002243
https://doi.org/10.1029/2022EA002243
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2022EA002243&domain=pdf&date_stamp=2022-06-16


Earth and Space Science

GRINDROD ET AL.

10.1029/2022EA002243

2 of 17

(e.g., Fraeman et al., 2020; Horgan et al., 2020; Wellington et al., 2017), but also have an impact on tactical and 
strategic planning during mission operations (e.g., Squyres et al., 2008). Such studies have ranged in their scope, 
including, but not limited to soil composition with Mars Pathfinder (Bell et al., 2000), rock coatings with Mars 
Exploration Rover (MER) Spirit (Bell et al., 2004), identifying meteorites on Mars with MERs Spirit and Oppor-
tunity (Schröder et al., 2008), water-ice abundance with Phoenix (Gyalay et al., 2019), and resolving cm-scale 
gypsum veins in host rocks (Vaniman et al., 2014).

The general filter positions of these multispectral instruments are similar, concentrating on wavelengths that 
attempt to maximize spectral discrimination of the surface. At the VNIR wavelengths covered by these instru-
ments, the most dominant absorption features are typically due to the presence of iron in different minerals (e.g., 
Horgan et al., 2014), including: crystal field absorptions near 900 and 1,000 nm in the Fe-bearing neo- and inos-
ilicates olivine and pyroxene respectively (e.g., Cloutis & Gaffey, 1991), charge transfer and crystal field transi-
tions around 500 and 900 nm in Fe 3+ oxides such as hematite (e.g., Townsend, 1987), and charge transfer effects 
in iron oxides and hydroxides such as goethite between 400 and 500 nm (e.g., Morris et al., 1985). However, 
subtle differences between the filter positions and bandwidths across instruments (Figure 1) makes cross-instru-
ment comparisons difficult (Cousins et al., 2012). For example, the longer wavelengths covered by the Mars2020 
(M2020) Perseverance rover Mastcam-Z instrument (Bell et al., 2021), allow key absorption features to be iden-
tified at and slightly beyond 1,000 nm. This spectral region is of particular interest in studies of hydrated and 
hydroxylated minerals, due to a weak H2O overtone absorption near 1,000 nm (e.g., Rice, Cloutis, et al., 2013). 
The differences in filter choices also renders cross-site comparisons more difficult, as the relative capability of 
instruments in identifying certain mineral groups could result in mis- or non-identification. This effect is particu-
larly important when attempting to compare local in situ studies to infer regional or global processes and geologic 
histories.

In order to better understand the multispectral performance of the most recent instruments on Mars rovers, and 
to optimize the future performance of the ExoMars Rosalind Franklin rover, we have carried out an analysis of 
the spectral performance of three different instruments. We focus this study on Mars Science Laboratory (MSL) 
Mastcam (Malin et al., 2017), M2020 Perseverance rover Mastcam-Z (Bell et  al., 2021), and ExoMars (EM) 
Rosalind Franklin Panoramic Camera (PanCam) Wide Angle Cameras (WACs) (Coates et  al.,  2017) instru-
ments. Using both laboratory spectral libraries of pure mineral and mixed rock spectra, and hyperspectral data 
collected from Mars orbit, we determine the error between the multispectral instruments and hyperspectral data. 
We use these errors to assess the relative performance of these three instruments across a range of mineral types 
and distinct units on Mars, and discuss confidence levels in comparison across instruments. In comparison to 
previous, more qualitative studies (e.g., Cuadros et al., 2022), we focus our discussion on the implications for 
optimization of the EM PanCam instrument, particularly the potential compositions expected at the landing site 
in Oxia Planum, before arrival at Mars.

2.  Data and Methods
Our approach for determining the spectral performance of a filter set, and thus a rover camera instrument, is 
similar across different data sets. We first describe the data and pre-processing steps, before outlining the methods 
used in each case.

2.1.  Data

We used the Western Washington University Visible and Infrared Spectroscopy brOwseR (VISOR, Million 
et  al.  (2022)), a compilation of four open databases (USGS, Kokaly et  al.  (2017); “playa evaporites”, Crow-
ley (1991); ASTER / ECOSTRESS, Meerdink et al. (2019), Baldridge et al. (2009)), to provide spectral library 
data. We selected a total of 163 spectra across six different mineralogical and rock groups (Table S1 in Supporting 
Information S1): basalt (n = 41), basaltic soil (n = 6), hematite (n = 35), olivine (n = 56), saponite (n = 15), and 
vermiculite (n = 10). These groups were selected due to their relevance and likely occurrence at the Oxia Planum 
landing site (Mandon et al., 2021; Quantin-Nataf et al., 2021). To predict the spectral response of each instrument 
to different mineral groups, we first linearly interpolated the VISOR spectra to a 1 nm spectral interval, to allow 
for detailed comparison (see Section 2.2). We then used the relevant instrument filter center wavelength and 
Full Width-Half Maximum (FWHM) (Table 1) to spectrally resample all VISOR spectra (Figure 2). We use the 
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common technique of fitting a Gaussian function with a FWHM equal to the center wavelength of each filter to 
resample our spectral data (e.g., Cousins et al., 2012), before linear interpolation to a 1 nm spectral interval for 
error analysis.

We processed and analyzed Full Resolution Targeted (FRT) Compact Reconnaissance Imaging Spectrometer for 
Mars (CRISM, Murchie et al.  (2007)) data sets (Table 2), following well-validated techniques (e.g., Ehlmann 
et al., 2009; Murchie, Mustard, et al., 2009). We first used a CRISM image of the Vera Rubin Ridge (VRR) 
area of Gale Crater, explored by the MSL (Grotzinger et al., 2012) Curiosity Rover, because of the extensive 
recent Mastcam multispectral and comparative CRISM studies (Fraeman et  al.,  2020; Horgan et  al.,  2020; 
Salvatore et al., 2020). We then extended our analysis to two further CRISM images at both Oxia Planum and 
Jezero Crater, the landing sites for ExoMars 2022 Rosalind Franklin rover and Mars2020 Perseverance rover. All 
CRISM images were obtained as Map-Projected Targeted Reduced Data Records (MTRDRs) from the NASA 
Planetary Data System (PDS) Geosciences Node. We used the CRISM Analysis Toolkit (CAT) v7.3 plug-in for 
the commercial software ENVI to analyze CRISM data when necessary, according to methods described by the 
CRISM team (Seelos et al., 2011), but no pre-processing or calibration is required for the higher level MTRDR 
data products. Single pixel spectra were taken from regions of interest (ROIs), as well as from spectrally-bland 
regions to produce ratioed spectra that emphasize spectral shape. We linearly interpolated the instrument spectra 
to match the spectral bands of CRISM data. Spectral parameters common in CRISM analysis were also used (e.g., 
Viviano-Beck et al., 2014) to create band threshold ROIs, which were then used to extract multi-pixel spectra.

2.2.  Methods

To provide a quantitative and objective measure of how well a filter set captures the spectral morphology, we 
followed previous studies in assessing the performance of different filter sets by determining the error between 
full spectra and resampled instrument spectra (Cousins et al., 2010, 2012). We used the Root Mean Square Error 

Figure 1.  Geology filter positions and bandwidths for different Mars rover camera instruments. (a) Imager for Pathfinder (IMP) (Smith et al., 1997). (b) Mars 
Exploration Rover (MER) Pancam (Bell et al., 2003). (c) Phoenix Surface Stereo Imager (SSI) (Smith et al., 2008). (d) Mars Science Laboratory (MSL) Mastcam 
(Malin et al., 2017). (e) Mars2020 (M2020) Mastcam-Z (Bell et al., 2021). (f) ExoMars Panoramic Camera (PanCam) (Coates et al., 2017).
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(RMSE) method, a common metric to measure the difference between spec-
tra (e.g., Harris & Grindrod, 2018). For the spectral library study, the RMSE 
is between the resampled, interpolated reflectance at filter wavelengths and 
the original VISOR spectrum,

RMSE =

√

∑1000

𝜆𝜆=440
[𝑅𝑅𝑚𝑚(𝜆𝜆) −𝑅𝑅𝑒𝑒(𝜆𝜆)]

2

𝑛𝑛

� (1)

where Rm(λ) is the reflectance of the mineral spectrum m at wavelength λ, 
Re(λ) is the resampled and interpolated reflectance at wavelength λ, and n 
is the number of data points. This procedure is repeated for every VISOR 
spectrum and instrument filter set. We also separately determine the magni-
tude of the reflectance error for each filter and instrument, by calculating the 
difference between every VISOR spectrum and the resampled, interpolated 
reflectance at each filter wavelength. For the CRISM study, the RMSE is 
between the resampled, interpolated reflectance at filter wavelengths and the 
original CRISM spectrum, and is also given by Equation 1. In this case, we 
calculate a RMSE value for every pixel in the CRISM image array, allowing 
additional spatial, as well as spectral, analysis.

3.  Results
We separate our results into two main categories, based on laboratory spec-
tral libraries and hyperspectral Mars data, but in each case aim to assess 
instrument performance for different mineral or rock types.

Filter 
number EM PanCam a MSL Mastcam b

M2020 
Mastcam-Z c

λ (nm)
FWHM 

(nm) λ (nm)
FWHM 

(nm) λ (nm)
FWHM 

(nm)

1 440 25 445 20 442 24

2 500 20 447 20 528 22

3 530 15 527 14 605 18

4 570 12 (527) (14) 677 22

5 610 10 676 10 754 20

6 670 12 751 20 800 18

7 740 15 805 20 (800) (18)

8 780 20 867 20 866 20

9 840 25 908 22 910 24

10 900 30 937 22 939 24

11 950 50 1012 42 978 20

12 1000 50 1013 42 1022 38

Note. Values in parentheses represent an identical filter in a separate left or 
right camera.
 aCoates et al. (2017).  bMalin et al. (2017).  cBell et al. (2021).

Table 1 
Geology Filter Center Wavelength (λ) and Full Width-Half Maximum 
(FWHM) of Multispectral Imaging Instruments on Mars

Figure 2.  Spectral resampling of VISOR for PanCam. In each case, the original spectral library spectrum is plotted (thin gray line), in addition to the PanCam 
spectrally resampled spectrum (thick black line) and filter positions (circles). A total of 163 spectra were used. (a) basalt spectra, (b) basaltic soil, (c), hematite, (d) 
olivine, (e) saponite, and (f) vermiculite.
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3.1.  Laboratory Spectral Libraries

We first assessed individual instrument performance for all laboratory spec-
tra according to compositional group (Figure 3, Table 3). For EM PanCam, 
the mean and maximum RMSE across all compositional groups is 0.0022 and 
0.0089 respectively. Across the compositional groups of basalt, basaltic soil, 
hematite, olivine, saponite, and vermiculite, the mean and standard deviation 
(SD) RMSE values for EM PanCam are 0.0006 (0.0005), 0.0013 (0.0003), 
0.0015 (0.0015), 0.0037 (0.0020), 0.0020 (0.0013), and 0.0027 (0.0009) 
respectively. For MSL Mastcam, the mean and maximum RMSE across all 
compositional groups is 0.0052 and 0.0250 respectively. Across the composi-
tional groups of basalt, basaltic soil, hematite, olivine, saponite, and vermic-
ulite, the mean and standard deviation (SD) RMSE values for MSL Mastcam 
are 0.0023 (0.0016), 0.0054 (0.0028), 0.0028 (0.0034), 0.0082 (0.0046), 

0.0069 (0.0070), and 0.0067 (0.0036) respectively. For M2020 Mastcam-Z, the mean and maximum RMSE 
across all compositional groups is 0.0035 and 0.0172 respectively. Across the compositional groups of basalt, 
basaltic soil, hematite, olivine, saponite, and vermiculite, the mean and standard deviation (SD) RMSE values 
for M2020 Mastcam-Z are 0.0010 (0.0008), 0.0024 (0.0007), 0.0025 (0.0031), 0.0061 (0.0036), 0.0026 (0.0017), 
and 0.0042 (0.0018) respectively. Overall, EM PanCam has the lowest RMSE values, with MSL Mastcam having 
the largest RMSE values. But there is significant variation between and within each compositional group for each 
instrument. All instruments show the lowest range of RMSE values for basalt and basaltic soil spectra. The stand-
ard deviation of RMSE shows the range in instrument performance for each compositional group, with the largest 

CRISM ID
Acquisition 

date Location

Resolution

Spectral 
(nm)

Spatial 
(m/px)

FRT0000B6F1 09-07-2008 Gale Crater 6.55 18

FRT00009A16 25-01-2008 Oxia Planum 6.55 18

FRT0000810D 06-10-2007 Oxia Planum 6.55 18

FRT000047A3 26-02-2007 Jezero Crater 6.55 18

FRT00005C5E 19-05-2007 Jezero Crater 6.55 18

Table 2 
CRISM Images Used in Mars Data Simulations

Figure 3.  The root mean square error (RMSE) for all spectra. In the top row, the spectra are split into compositional group, and retain the same spectra number across 
plots. (a) RMSE for PanCam. (b) RMSE for Mastcam. (c) RMSE for Mastcam-Z. In the bottom row, the spectra are split into groups according to grain size, as recorded 
in the spectral library, and retain the same space number across plots. (d) RMSE for PanCam. (e) RMSE for Mastcam. (f) RMSE for Mastcam-Z.
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SD values for EM PanCam being for hematite, for MSL Mastcam being for 
olivine, and for M2020 Mastcam-Z being for olivine.

We then assessed the relative instrument performance for individual labora-
tory spectra according to compositional group (Figure 4). EM PanCam has 
lower RMSE than MSL Mastcam for 137 of 163 spectra, equivalent to 84% 
of the spectral library. The mean difference in RMSE for those spectra for 
which EM PanCam has a lower value is 0.0039, whereas for those spectra 
for which MSL Mastcam has a lower value is 0.0013. Of those 26 spectra 
for which EM PanCam has higher RMSE, 8 are basalt, 7 are hematite, 9 
are olivine, and 2 are saponite. EM PanCam has lower RMSE than M2020 
Mastcam-Z for 123 of 163 spectra, equivalent to 75% of the spectral library. 
The mean difference in RMSE for those spectra for which EM PanCam 
has a lower value is 0.0022, whereas for those spectral for which M2020 
Mastcam-Z has a lower value is 0.0014. Of those 40 spectra for which EM 
PanCam has higher RMSE, 10 are basalt, 9 are hematite, 13 are olivine, 4 
are saponite, and 4 are vermiculite. M2020 Mastcam-Z has lower RMSE 
than MSL Mastcam for 154 of 163 spectra, equivalent to 94% of the spectral 

library. The mean difference in RMSE for those spectra for which M2020 Mastcam-Z has a lower value is 0.0019, 
whereas for those spectra for which MSL Mastcam has a lower value is 0.00009. Of those 9 spectra for which 
M2020 Mastcam-Z has higher RMSE, 7 are hematite, and 1 is saponite. There does not appear to be any system-
atic trend in RMSE between EM PanCam and other instruments, but there is a noticeable relationship for RMSE 
of spectra between MSL Mastcam and M2020 Mastcam-Z. We also assessed the relative instrument performance 
for individual laboratory spectra according to grain size of the samples (Figure 3). Overall, for those samples in 
the spectral library for which it is recorded, we see no clear relationships between grain size and RMSE. To some 
extent, the grain size of a particular compositional group can be limited to just a few ranges, but does not show 
any correlation with RMSE. In essence, all grain sizes occur at all RMSE values across compositional groups 
and instruments.

In an attempt to further explore the performance of different instruments, we assessed the error at each filter 
wavelength position (Figure 5). In this case, the error was calculated at each wavelength position, rather than as a 
total RMSE value. For each instrument, increasing filter number corresponds to increasing wavelength (Table 1). 
In general, individual filter performance varies within, and across, instruments for different mineral groups, but 
the lowest errors occur for basalt, basaltic soil, and hematite. For basalt spectra, all instruments have an overall 
similar performance, tending to have higher errors at the two lowest and highest filter positions, and lowest errors 
for the middle 7–8 filters. For basaltic soil spectra, all instruments have relatively higher errors in the second filter 
position (and beyond for MSL Mastcam), where there is a generally positive spectral slope in these compositions. 
EM PanCam also shows relatively higher errors in filter positions 11 and 12 for basaltic soil. For hematite, rela-
tive performance of each instrument varies across the filters, with EM PanCam having lowest errors at the small-
est filter positions. For olivine spectra, all instruments perform best at filters 6–10, but with significant variation 
across instruments elsewhere. For both saponite and vermiculite, although errors are overall relatively low for 
EM PanCam, it is noticeable that significant errors occur at the filter 11 position, which has a lower wavelength 
(950 nm) than both MSL Mastcam (1,012 nm) and M2020 Mastcam-Z (978 nm).

3.2.  Orbital Hyperspectral Data

In using orbital hyperspectral data in our study, we first carried out single pixel analysis, before moving onto 
larger multi-pixel regions of interest, and finally whole image examinations. We first focused our attention on 
the Vera Rubin Ridge area of Gale Crater (Figure 6), which was explored by MSL in 2017 and 2018, the inves-
tigation of which included a dedicated multispectral campaign with Mastcam (e.g., Bennett et al., 2021; Edgar 
et al., 2020; Fraeman et al., 2020; Horgan et al., 2020). To the best of our ability, we identified the area in CRISM 
hyperspectral data that was explored with Mastcam by MSL, as a ground-truth to our simulations. This particular 
part of Vera Rubin Ridge has been shown to be rich in hematite, both with Mastcam (Fraeman et al., 2020; Horgan 
et al., 2020) and other instruments (e.g., Berger et al., 2020; L'Haridon et al., 2020), and is surrounded down- 
and up-section by rocks containing phyllosilicates and hydrated sulfates respectively (e.g., Fraeman et al., 2016; 

Compositional 
group

EM PanCam MSL Mastcam M2020 Mastcam-Z

Mean SD Mean SD Mean SD

All 0.0022 0.0019 0.0052 0.0047 0.0035 0.0034

Basalt 0.0006 0.0005 0.0023 0.0016 0.0010 0.0008

Basaltic soil 0.0013 0.0003 0.0054 0.0028 0.0024 0.0007

Hematite 0.0015 0.0015 0.0028 0.0034 0.0025 0.0031

Olivine 0.0037 0.0020 0.0082 0.0046 0.0061 0.0036

Saponite 0.0020 0.0013 0.0069 0.0070 0.0026 0.0017

Vermiculite 0.0027 0.0009 0.0067 0.0036 0.0042 0.0018

Note. In each case, the mean and standard deviation (SD) RMSE are given.

Table 3 
Instrument Performance for All Laboratory Spectra According to 
Compositional Group
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Golombek et al., 2012; Milliken et al., 2010; Sheppard et al., 2021). All simulated multispectral instruments have 
a similar overall spectral slope to that seen in the full spectral resolution CRISM data, but with some noticeable 
differences. To identify and enhance these differences, we used ratioed spectra, applying the common tech-
nique of using a spectrally-bland region to remove the background spectral signatures (e.g., Murchie, Seelos, 
et al., 2009). The diagnostic absorption feature for hematite at ∼850–900 nm is identified in all instruments, but 
only M2020 Mastcam-Z partially resolves a possible drop in CRISM reflectance ∼1,000 nm. EM PanCam also 
misidentifies an absorption feature at 670 nm, which is likely the result of the 610 nm filter coinciding with a 
possible high noise part of the CRISM spectrum. M2020 Mastcam-Z also has a slight decrease in reflectance at 
that wavelength, but to a lesser degree than EM PanCam.

Figure 4.  Comparison of root mean square error (RMSE) between instruments. (a) Schematic explanation of which camera has lower RMSE. (b) Bivariate plot of 
PanCam and Mastcam RMSE. (c) Bivariate plot of PanCam and Mastcam-Z RMSE. (d) Bivariate plot of Mastcam and Mastcam-Z RMSE.
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We next investigated the spectral performance of the instruments using multi-pixel Regions of Interest (ROIs) 
throughout the CRISM image scene (Figure 7). This common technique uses spectral parameters to first identify 
regions with particular spectral features (e.g., Pelkey et al., 2007; Viviano-Beck et al., 2014), which are then 
selected to calculate average spectra. The aim of this approach is to determine typical spectra for regions that 
could correspond to units of similar spectral shape, and ideally, composition. We used two spectral parameters 
in the first instance, calculated using standard techniques and shoulder wavelength positions outlined in previous 
studies (Viviano-Beck et al., 2014): (a) BD860_2, which measures the band depth of the absorption feature at 

Figure 5.  Box and whisker plot showing absolute reflectance error as a function of filter number. In each case the median (horizontal line), the 25th and 75th 
percentiles (box), and the most extreme data points not considered outliers – values 1.5 times larger than the interquartile range – (whiskers) are given. A total of 163 
spectra were used. (a) basalt spectra, (b) basaltic soil, (c), hematite, (d) olivine, (e) saponite, and (f) vermiculite.
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860 nm, often diagnostic of crystalline ferric minerals, especially hematite; and (b) BDI1000VIS, which meas-
ures the integrated band depth at 1,000 nm, often diagnostic of olivine, pyroxene, or Fe-bearing glass. These 
BD860_2 and BDI1000VIS ROIs returned spectra averaged over 8,009 and 30,225 pixels respectively, for which 
we investigate both the spectral shape and the RMSE of each instrument from the original CRISM data. The 
spectra of each instrument has a similar overall shape to the original CRISM spectrum, and on the whole recre-
ates well the spectral morphology. There are no obvious absorption features for either ROI, but the gap in filters 
between ∼530 and 670 nm for MSL Mastcam mean that some information on any possible shoulder at ∼600 nm 
is lost. It is clear that in terms of RMSE from the CRISM data, M2020 Mastcam-Z has the best performance, 
with a mean (SD) value of 0.0030 (0.0003) for BD860_2 and 0.0028 (0.0003) for BDI1000VIS. EM PanCam 
has slightly higher RMSE, with a mean (SD) value of 0.0035 (0.0004) for BD860_2 and 0.0031 (0.0003) for 
BDI1000VIS. MSL Mastcam has noticeably higher RMSE, with a mean (SD) value of 0.0065 (0.0006) for 
BD860_2 and 0.0070 (0.0008) for BDI1000VIS.

We finally extended the RMSE analysis for the entire CRISM image scene (Figure 8). Again, M2020 has the best 
performance, with a mean (SD) RMSE value of 0.0037 (0.0007). EM PanCam has only a slightly worse perfor-
mance, with a mean (SD) RMSE value of 0.0041 (0.0008). MSL Mastcam again has the highest RMSE, with a 
mean (SD) value of 0.0072 (0.0007) across the entire CRISM image scene. In an attempt to better understand 
the partial bimodality in the RMSE frequency in EM PanCam data, we further break down the analysis with 
four more spectral parameters typically used in CRISM analysis. There is a large number of RMSE values that 
correspond to regions with strong BD640_2 signatures, typical of areas rich in select ferric minerals, especially 
maghemite. Contributions from other regions that have signatures from SH660_2 (typical of select ferric miner-
als, especially hematite or goethite), SH770 (typical of select ferric minerals, but less sensitive to low-calcium 
pyroxene), and BD920 (typical of crystalline ferric minerals and low-calcium pyroxene), are less significant 
than previous spectral parameters considered, suggesting further contributions not accounted for in the choice of 
spectral parameters. To investigate where these areas might be in the CRISM image scene, we produced maps of 
RMSE values, which show high RMSE values that correspond to the higher elevation, anhydrous regions of Mt 
Sharp (e.g., Sheppard et al., 2021). All instruments show a similar region of high RMSE in this area, but MSL 
Mastcam also shows additional areas of relatively high RMSE in the west and northwest of the CRISM image 
scene, corresponding to areas of low RMSE in other instruments.

Applying a similar whole CRISM image analysis to four more images (Figure S1 in Supporting Information S1), 
two of the EM landing site in Oxia Planum, and two of the M2020 landing site in Jezero Crater, yields simi-
lar overall results (Figure 9). M2020 Mastcam-Z and EM PanCam have similar RMSE values at all four sites, 
although EM PanCam has slightly better performance at two of the sites (one in Oxia Planum, one in Jezero 
Crater). The mean values for these two instruments are similar to those observed at Gale Crater, albeit with no 
obvious bimodal RMSE distribution. MSL Mastcam has consistently higher RMSE values, with similar values 
to those observed at Gale Crater. The range of RMSE values is lower at these four sites for all instruments, as 
demonstrated by the standard deviation of values.

4.  Discussion
The delay in the launch of the EM Rosalind Franklin rover mission means that we can use experience from previ-
ous and ongoing multispectral imaging instruments to optimize not only the science returned from the PanCam 
instrument, but also operational strategies. Although the Mastcam-Z instrument is now on Mars, at the time of 
writing, initial results have only just begun to be published (Mangold et al., 2021). Thus, relevant examples of the 
application of in situ multispectral investigations are best provided at present by the Mastcam instrument (e.g., 
Bell et al., 2019; Horton et al., 2021; Johnson et al., 2016; Wellington et al., 2017).

In both the laboratory spectral library and CRISM hyperspectral simulations, we have observed similar perfor-
mance across instruments. Overall, M2020 Mastcam-Z and EM PanCam have similar performance, with both 
being better than MSL Mastcam in terms of minimizing RMSE. There is a clear systematic improvement in 

Figure 6.  Single pixel investigation of spectral resampling of CRISM data for Gale Crater. (a) Visible wavelength RGB image of CRISM hyperspectral cube 
FRT0000B6F1. Star shows the location of spectrum at Vera Rubin Ridge (VRR) analyzed in sub-figures. (b) Spectral parameter image highlighting regions of possible 
enrichments in different minerals, such as olivine (red), phyllosilicates (green), and hydrated phases (blue). (c) CRISM single pixel spectra of VRR, bland region, and 
subsequent ratio. (d) PanCam resampled single pixel spectra of VRR, bland region, and subsequent ratio. (e) Mastcam resampled single pixel spectra of VRR, bland 
region, and subsequent ratio. (f) Mastcam-Z resampled single pixel spectra of VRR, bland region, and subsequent ratio.
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Figure 7.  Multi-pixel region of interest (ROI) investigation of spectral resampling of CRISM data for Gale Crater. (a) Visible wavelength RGB image of CRISM 
hyperspectral cube FRT0000B6F1, overlain by band threshold ROI (8,009 pixels) using spectral parameter BD860_2. (b) Visible wavelength RGB image of CRISM 
hyperspectral cube FRT0000B6F1, overlain by band threshold ROI (30,225 pixels) using spectral parameter BDI1000VIS. (c) Spectra for BD860_2 for CRISM, 
and resampled for PanCam, Mastcam, and Mastcam-Z. (d) Spectra for BDI1000VIS for CRISM, and resampled for PanCam, Mastcam, and Mastcam-Z. (e) RMSE 
histogram for BD860_2 between CRISM and resampled for PanCam, Mastcam, and Mastcam-Z. (f) RMSE histogram for BDI1000VIS between CRISM and resampled 
for PanCam, Mastcam, and Mastcam-Z.
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M2020 Mastcam-Z over MSL Mastcam when comparing individual mineral and rock type spectra. This improve-
ment is likely due to the method by which the M2020 Mastcam-Z filters were selected. The intentional reposi-
tioning of several narrowband filters on Mastcam-Z was designed to give an overall similar, albeit improved, 
performance over MSL Mastcam, particularly with hydrated and iron-bearing mineral phases (Bell et al., 2021).

It is important to note that spectral libraries were chosen to reflect the mineralogy expected at the Oxia Planum 
landing site for the EM Rosalind Franklin rover, and although there are likely to be similarities in composi-
tion, the simulated instrument performance may differ slightly with other general mineralogies. Nonetheless, the 
general performance across mineral groups are similar across all instruments, with the lowest RMSE values for 
hematite, basalt, and basaltic soil. Although the median error was the lowest for hematite, there are some notice-
able outliers that correspond to those spectra that have the largest shoulder at ∼750 nm. Minerals with broader, 

Figure 8.  Root mean square error (RMSE) analysis for all pixels in CRISM data of Gale Crater. (a) RMSE histogram for all pixels between CRISM and resampled 
PanCam, Mastcam, and Mastcam-Z. (b) RMSE histogram for ROIs between CRISM and resampled PanCam, using band threshold ROI for spectral parameters 
BD_640_2 (52,098 pixels), SH660_2 (36,268 pixels), SH770 (27,186 pixels), and BD920_2 (24,404 pixels). (c) RMSE image between CRISM and resampled PanCam. 
(d) RMSE image between CRISM and resampled Mastcam. (e) RMSE image between CRISM and resampled Mastcam-Z.
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or absent, absorption features in these visible wavelengths, such as olivine, saponite, and vermiculite have overall 
larger RMSE values. This difference in performance as a function of compositional group is important when 
considering the possible different aqueous alteration products often used in targeting and detailed study in situ on 
Mars (e.g., Bennett et al., 2021; Edgar et al., 2020; Fraeman et al., 2020; Horgan et al., 2020).

During the campaign at Vera Rubin Ridge, MSL Mastcam acquired several full multispectral image data sets of 
the surface. Observations of brushed rock surfaces in particular revealed strong absorption features at ∼860 nm, 
interpreted to be due to the presence of hematite in significant abundances (Fraeman et al., 2020). Our simula-
tions using CRISM data of the same area are not an exact comparison, due to (a) the difference in spatial reso-
lution between orbital and in situ data sets, (b) the gap in sampling between ∼620 and 720 nm, and (c) because 
the surfaces have not been brushed. But, in our simulated data, this absorption feature is present in all instrument 
ratioed spectra. The MSL Mastcam spectrum in particular has a similar overall shape similar to that observed in 
situ at the “Stranraer” target on Sol 2007 (Fraeman et al., 2020). This target had some of the deepest ferric absorp-
tions along this part of the traverse, and is thought to be the opposite end-member to the nearby “Oban” target, 
which is likely rich in gray hematite material (Fraeman et al., 2020). It is not possible to separate these end-mem-
bers from our simulated spectra, but given that both the diagnostic absorption feature and overall spectral shape 
are correctly recovered, we are confident that (a) our simulated instrument spectra using CRISM data accurately 
predict the instrument responses to such a mineralogy, and (b) that both EM PanCam and M2020 Mastcam-Z 
should be able to identify similar hematite deposits on the surface of Mars.

The main scientific goal of the ExoMars Rosalind Franklin rover mission is to search for life on Mars (Vago 
et al., 2017). The PanCam instrument will support this goal through the characterization of the surface as the 
main remote sensing instrument on the rover. The PanCam WACs studied here provide spectral information 
between approximately 400 and 1,000  nm, and are complemented by the PanCam High Resolution Camera 
(HRC), which provides focusable, visible wavelength, color images through a Bayer filter (Coates et al., 2017). 
Other complementary instruments include the Infrared Spectrometer for ExoMars (ISEM) instrument, a mast-
mounted spectrometer, which provides point spectra between 1,150 and 3,300 nm (Korablev et al., 2017), and 
the Close-Up Imager (CLUPI), a drill-mounted, high-resolution, focusable camera that takes color images with a 
full color active pixel sensor in the 400–700 nm range (Josset et al., 2017). Therefore it is important that any opti-
mization of PanCam is carried out with consideration of these other instruments. For example, we have shown 
that PanCam performs well in the spectral characterization of hematite, but will almost certainly require longer 

Figure 9.  Root mean square error (RMSE) analysis for different CRISM images. (a) RMSE histogram for all pixels between CRISM and resampled PanCam, Mastcam, 
and Mastcam-Z for Oxia Planum site 1 (FRT00009A16). (b) RMSE histogram for all pixels between CRISM and resampled PanCam, Mastcam, and Mastcam-Z for 
Oxia Planum site 2 (FRT0000810D). (c) RMSE histogram for all pixels between CRISM and resampled PanCam, Mastcam, and Mastcam-Z for Jezero crater site 1 
(FRT000047A3). (d) RMSE histogram for all pixels between CRISM and resampled PanCam, Mastcam, and Mastcam-Z for Jezero crater site 2 (FRT00005C5E).
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wavelength information from ISEM for minerals such as olivine, saponite, or vermiculite, for which PanCam 
has a higher RMSE. These apparent poorer identifications are particularly important at Oxia Planum, where the 
two main types of bedrock can be split into a (a) Fe/Mg-rich clay, possibly including saponite, and (b) probable 
olivine-rich deposits as identified by a broad absorption feature at ∼1,000 nm (Mandon et al., 2021). In these 
bedrock regions, which are likely to be high priority targets for drilling and sampling, it is likely that complemen-
tary instruments, such as ISEM, will also be critical for mafic mineral identification. Previous studies have used 
emulators for studying the performance of PanCam and other ExoMars instruments in the field on Earth (e.g., 
Allender et al., 2020, 2021; Harris et al., 2015), and we can also use multispectral instrument application on Mars 
as a guide to best practice use (e.g., Farrand et al., 2006, 2007, 2008, 2013, 2014; Rice et al., 2010; Rice, Bell, 
et al., 2013). These studies made particular use of spectral parameters, which capture some specified spectral 
feature (e.g., Bell et al., 2000; Pelkey et al., 2007; Viviano-Beck et al., 2014), to help indicate broad mineralogi-
cal composition, abundance, or grain size fluctuations. We will address the optimization of spectral parameters, 
and calibrated instrument response of PanCam in another study, but note here that instrument error as a func-
tion of filter number suggests that spectral parameter performance is likely to vary according to the reflectance 
error at each filter wavelength. For example, the relatively poor performance by EM PanCam at filter number 
11 (950 nm) for the phyllosilicates saponite and vermiculite should be taken into account when devising and 
selecting spectral parameters that aim to emphasize any hydration-related absorption features close to 1,000 nm.

In an ideal situation, PanCam will be able to collect and return to Earth full multispectral data on a regular basis. 
However, limits in power, data, and time are all likely to reduce the occasions on which the full geology filter 
set can be implemented on Mars (e.g., Balme et al., 2019). In these cases, our analysis suggests that minerals 
with distinctive absorption features in the VNIR, such as hematite, are well suited to restricted filter selection to 
target specific spectral features. For example, the performance of PanCam in identifying the ∼860 nm absorp-
tion feature could be exploited during operations by only using filter numbers 8, 9, and 10, which bracket this 
region. Although PanCam performs well on basaltic and basaltic soil compositions from laboratory data, when 
spectra are lacking diagnostic absorption features, such as in the higher elevation, anhydrous regions of Mt Sharp, 
then multispectral performance decreases, reducing the opportunity for targeted filter use. The tactical decision 
making in selecting PanCam filter use for considering drill targets will then have to be guided carefully by 
complementary in situ data such as EM PanCam broadband RGB and HRC (Coates et al., 2017), ISEM (Korablev 
et al., 2017), and CLUPI (Josset et al., 2017), in addition to orbital data such as CRISM (Murchie et al., 2007), 
HiRISE (McEwen et al., 2007), and CaSSIS (Thomas et al., 2017).

5.  Conclusions
The ability of a visible and near-infrared multispectral imaging instrument to acquire accurate spectra for in situ 
Mars science is controlled by the selection of narrowband filters. These instruments not only provide contex-
tual geological information, but through the use of narrowband filters at discrete wavelengths, also allow spec-
tral information of the surface to be gathered at visible and near-infrared wavelengths. The primary use of the 
multispectral information is to determine composition and putative mineralogy that can be used in isolation, but 
also allow targeted investigation with other payload instruments. Given that different instruments have subtle 
differences in filter center wavelengths and bandwidths, and have gone to different locations on Mars, it is diffi-
cult to quantitatively assess the relative performance across missions. We have assessed the relative performance 
of filter sets for three different instruments that are either already, or will soon land, on Mars. By determining the 
root mean square error (RMSE) between the simulated instrumental spectral response, and both laboratory spec-
tral libraries and Mars orbital hyperspectral data, we have assessed the relative performance across instruments, 
mineral groups, and spectral parameter surface units. We found that PanCam and Mastcam-Z have generally simi-
lar values of RMSE, and are consistently lower than for Mastcam, across both laboratory and remote sensing data 
sets. The general performance across mineral groups are similar across all instruments, with the lowest RMSE 
values for hematite, basalt, and basaltic soil. Minerals with broader, or absent, absorption features in these visible 
wavelengths, such as olivine, saponite, and vermiculite have overall larger RMSE values. Instrument RMSE as 
a function of filter wavelength and bandwidth suggests that spectral parameters that use lower wavelengths are 
likely to perform better. Our simulations of the spectral performance of the PanCam instrument will help direct 
comparisons between cross-mission instrument analyses, and allow the future use of targeted filter selection 
during ExoMars Rosalind Franklin operations on Mars.
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Data Availability Statement
All spectral library data are available at the Western Washington University Visible and Infrared Spectroscopy 
Browser (https://westernreflectancelab.com/visor/). All CRISM data are available through the NASA PDS 
Geosciences Node CRISM Archive (https://pds-geosciences.wustl.edu/missions/mro/crism.htm). Our derived 
spectral library and CRISM data results are available at the Figshare Archive (Grindrod, 2022).
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