91 research outputs found

    Characterization of α‑synuclein multimer stoichiometry in complex biological samples by electrophoresis

    Get PDF
    The aberrant aggregation of α-synuclein in the brain is a hallmark of Parkinson’s disease (PD). In vivo soluble α-synuclein occurs as a monomer and several multimers, the latter of which may be important for the biological function of α-synuclein. Currently, there is a lack of reproducible methods to compare α-synuclein multimer abundance between complex biological samples. Here we developed a method, termed “multimer-PAGE,” that combines in-gel chemical cross-linking with several common electrophoretic techniques to measure the stoichiometry of soluble α-synuclein multimers in brain tissue lysates. Results show that soluble α-synuclein from the rat brain exists as several high molecular weight species of approximately 56 kDa (αS56), 80 kDa (αS80), and 100 kDa (αS100) that comigrate with endogenous lipids, detergents, and/or micelles during blue native gel electrophoresis (BN-PAGE). Co-extraction of endogenous lipids with α-synuclein was essential for the detection of soluble α-synuclein multimers. Homogenization of brain tissue in small buffer volumes (\u3e50 mg tissue per 1 mL buffer) increased relative lipid extraction and subsequently resulted in abundant soluble multimer detection via multimer-PAGE. α-Synuclein multimers captured by directly cross-linking soluble lysates resembled those observed following multimer-PAGE. The ratio of multimer (αS80) to monomer (αS17) increased linearly with protein input into multimer-PAGE, suggesting to some extent, multimers were also formed during electrophoresis. Overall, soluble α-synuclein maintains lipid interactions following tissue disruption and readily forms multimers when this lipid–protein complex is preserved. Once the multimer-PAGE technique was validated, relative stoichiometric comparisons could be conducted simultaneously between 14 biological samples. Multimer-PAGE provides a simple inexpensive biochemical technique to study the molecular factors influencing α-synuclein multimerization

    Complete mitochondrial genomes and nuclear ribosomal RNA operons of two species of Diplostomum (Platyhelminthes: Trematoda): a molecular resource for taxonomy and molecular epidemiology of important fish pathogens

    Get PDF
    © 2015 Brabec et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http:// creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. The attached file is the published version of the article

    Tetraspanin (TSP-17) Protects Dopaminergic Neurons against 6-OHDA-Induced Neurodegeneration in <i>C. elegans</i>

    Get PDF
    Parkinson's disease (PD), the second most prevalent neurodegenerative disease after Alzheimer's disease, is linked to the gradual loss of dopaminergic neurons in the substantia nigra. Disease loci causing hereditary forms of PD are known, but most cases are attributable to a combination of genetic and environmental risk factors. Increased incidence of PD is associated with rural living and pesticide exposure, and dopaminergic neurodegeneration can be triggered by neurotoxins such as 6-hydroxydopamine (6-OHDA). In C. elegans, this drug is taken up by the presynaptic dopamine reuptake transporter (DAT-1) and causes selective death of the eight dopaminergic neurons of the adult hermaphrodite. Using a forward genetic approach to find genes that protect against 6-OHDA-mediated neurodegeneration, we identified tsp-17, which encodes a member of the tetraspanin family of membrane proteins. We show that TSP-17 is expressed in dopaminergic neurons and provide genetic, pharmacological and biochemical evidence that it inhibits DAT-1, thus leading to increased 6-OHDA uptake in tsp-17 loss-of-function mutants. TSP-17 also protects against toxicity conferred by excessive intracellular dopamine. We provide genetic and biochemical evidence that TSP-17 acts partly via the DOP-2 dopamine receptor to negatively regulate DAT-1. tsp-17 mutants also have subtle behavioral phenotypes, some of which are conferred by aberrant dopamine signaling. Incubating mutant worms in liquid medium leads to swimming-induced paralysis. In the L1 larval stage, this phenotype is linked to lethality and cannot be rescued by a dop-3 null mutant. In contrast, mild paralysis occurring in the L4 larval stage is suppressed by dop-3, suggesting defects in dopaminergic signaling. In summary, we show that TSP-17 protects against neurodegeneration and has a role in modulating behaviors linked to dopamine signaling

    Lives versus Livelihoods? Perceived economic risk has a stronger association with support for COVID-19 preventive measures than perceived health risk

    Get PDF
    This paper examines whether compliance with COVID-19 mitigation measures is motivated by wanting to save lives or save the economy (or both), and which implications this carries to fight the pandemic. National representative samples were collected from 24 countries (N = 25,435). The main predictors were (1) perceived risk to contract coronavirus, (2) perceived risk to suffer economic losses due to coronavirus, and (3) their interaction effect. Individual and country-level variables were added as covariates in multilevel regression models. We examined compliance with various preventive health behaviors and support for strict containment policies. Results show that perceived economic risk consistently predicted mitigation behavior and policy support—and its effects were positive. Perceived health risk had mixed effects. Only two significant interactions between health and economic risk were identified—both positive

    Intentions to be Vaccinated Against COVID-19:The Role of Prosociality and Conspiracy Beliefs across 20 Countries

    Get PDF
    Understanding the determinants of COVID-19 vaccine uptake is important to inform policy decisions and plan vaccination campaigns. The aims of this research were to: (1) explore the individual- and country-level determinants of intentions to be vaccinated against SARS-CoV-2, and (2) examine worldwide variation in vaccination intentions. This cross-sectional online survey was conducted during the first wave of the pandemic, involving 6697 respondents across 20 countries. Results showed that 72.9% of participants reported positive intentions to be vaccinated against COVID-19, whereas 16.8% were undecided, and 10.3% reported they would not be vaccinated. At the individual level, prosociality was a significant positive predictor of vaccination intentions, whereas generic beliefs in conspiracy theories and religiosity were negative predictors. Country-level determinants, including cultural dimensions of individualism/collectivism and power distance, were not significant predictors of vaccination intentions. Altogether, this study identifies individual-level predictors that are common across multiple countries, provides further evidence on the importance of combating conspiracy theories, involving religious institutions in vaccination campaigns, and stimulating prosocial motives to encourage vaccine uptake.</p

    Molecular approaches to trematode systematics: 'best practice' and implications for future study

    Get PDF
    To date, morphological analysis has been the cornerstone to trematode systematics. However, since the late-1980s we have seen an increased integration of genetic data to overcome problems encountered when morphological data are considered in isolation. Here, we provide advice regarding the ‘best molecular practice’ for trematode taxonomy and systematic studies, in an attempt to help unify the field and provide a solid foundation to underpin future work. Emphasis is placed on defining the study goals and recommendations are made regarding sample preservation, extraction methods, and the submission of molecular vouchers. We advocate generating sequence data from all parasite species/host species/geographic location combinations and stress the importance of selecting two independently evolving loci (one ribosomal and one mitochondrial marker). We recommend that loci should be chosen to provide genetic variation suitable to address the question at hand and for which sufficient ‘useful’ comparative sequence data already exist. Quality control of the molecular data via using proof-reading Taq polymerase, sequencing PCR amplicons using both forward and reverse primers, ensuring that a minimum of 85% overlap exists when constructing consensus sequences, and checking electropherograms by eye is stressed. We advise that all genetic results are best interpreted using a holistic biological approach, which considers morphology, host identity, collection locality, and ecology. Finally, we consider what advances next-generation sequencing holds for trematode taxonomy and systematics

    Molecular signatures of the rediae, cercariae and adult stages in the complex life cycles of parasitic flatworms (Digenea: Psilostomatidae)

    Get PDF
    BACKGROUND: Parasitic flatworms (Trematoda: Digenea) represent one of the most remarkable examples of drastic morphological diversity among the stages within a life cycle. Which genes are responsible for extreme differences in anatomy, physiology, behavior, and ecology among the stages? Here we report a comparative transcriptomic analysis of parthenogenetic and amphimictic generations in two evolutionary informative species of Digenea belonging to the family Psilostomatidae. METHODS: In this study the transcriptomes of rediae, cercariae and adult worm stages of Psilotrema simillimum and Sphaeridiotrema pseudoglobulus, were sequenced and analyzed. High-quality transcriptomes were generated, and the reference sets of protein-coding genes were used for differential expression analysis in order to identify stage-specific genes. Comparative analysis of gene sets, their expression dynamics and Gene Ontology enrichment analysis were performed for three life stages within each species and between the two species.RESULTS: Reference transcriptomes for P. simillimum and S. pseudoglobulus include 21,433 and 46,424 sequences, respectively. Among 14,051 orthologous groups (OGs), 1354 are common and specific for two analyzed psilostomatid species, whereas 13 and 43 OGs were unique for P. simillimum and S. pseudoglobulus, respectively. In contrast to P. simillimum, where more than 60% of analyzed genes were active in the redia, cercaria and adult worm stages, in S. pseudoglobulus less than 40% of genes had such a ubiquitous expression pattern. In general, 7805 (36.41%) and 30,622 (65.96%) of genes were preferentially expressed in one of the analyzed stages of P. simillimum and S. pseudoglobulus, respectively. In both species 12 clusters of co-expressed genes were identified, and more than a half of the genes belonging to the reference sets were included into these clusters. Functional specialization of the life cycle stages was clearly supported by Gene Ontology enrichment analysis.CONCLUSIONS: During the life cycles of the two species studied, most of the genes change their expression levels considerably, consequently the molecular signature of a stage is not only a unique set of expressed genes, but also the specific levels of their expression. Our results indicate unexpectedly high level of plasticity in gene regulation between closely related species. Transcriptomes of P. simillimum and S. pseudoglobulus provide high quality reference resource for future evolutionary studies and comparative analyses

    Metabolic phenotyping of opioid and psychostimulant addiction: A novel approach for biomarker discovery and biochemical understanding of the disorder.

    Get PDF
    Despite the progress in characterising the pharmacological profile of drugs of abuse, their precise biochemical impact remains unclear. The metabolome reflects the multifaceted biochemical processes occurring within a biological system. This includes those encoded in the genome but also those arising from environmental/exogenous exposures and interactions between the two. Using metabolomics, the biochemical derangements associated with substance abuse can be determined as the individual transitions from recreational drug to chronic use (dependence). By understanding the biomolecular perturbations along this time course and how they vary across individuals, metabolomics can elucidate biochemical mechanisms of the addiction cycle (dependence/withdrawal/relapse) and predict prognosis (recovery/relapse). In this review, we summarise human and animal metabolomic studies in the field of opioid and psychostimulant addiction. We highlight the importance of metabolomics as a powerful approach for biomarker discovery and its potential to guide personalised pharmacotherapeutic strategies for addiction targeted towards the individual's metabolome
    • 

    corecore