352 research outputs found

    Diversity and evolution of surface polysaccharide synthesis loci in Enterobacteriales.

    Get PDF
    Bacterial capsules and lipopolysaccharides are diverse surface polysaccharides (SPs) that serve as the frontline for interactions with the outside world. While SPs can evolve rapidly, their diversity and evolutionary dynamics across different taxonomic scales has not been investigated in detail. Here, we focused on the bacterial order Enterobacteriales (including the medically relevant Enterobacteriaceae), to carry out comparative genomics of two SP locus synthesis regions, cps and kps, using 27,334 genomes from 45 genera. We identified high-quality cps loci in 22 genera and kps in 11 genera, around 4% of which were detected in multiple species. We found SP loci to be highly dynamic genetic entities: their evolution was driven by high rates of horizontal gene transfer (HGT), both of whole loci and component genes, and relaxed purifying selection, yielding large repertoires of SP diversity. In spite of that, we found the presence of (near-)identical locus structures in distant taxonomic backgrounds that could not be explained by recent exchange, pointing to long-term selective preservation of locus structures in some populations. Our results reveal differences in evolutionary dynamics driving SP diversity within different bacterial species, with lineages of Escherichia coli, Enterobacter hormaechei and Klebsiella aerogenes most likely to share SP loci via recent exchange; and lineages of Salmonella enterica, Citrobacter sakazakii and Serratia marcescens most likely to share SP loci via other mechanisms such as long-term preservation. Overall, the evolution of SP loci in Enterobacteriales is driven by a range of evolutionary forces and their dynamics and relative importance varies between different species

    Diversity and evolution of surface polysaccharide synthesis loci in Enterobacteriales.

    Get PDF
    Bacterial capsules and lipopolysaccharides are diverse surface polysaccharides (SPs) that serve as the frontline for interactions with the outside world. While SPs can evolve rapidly, their diversity and evolutionary dynamics across different taxonomic scales has not been investigated in detail. Here, we focused on the bacterial order Enterobacteriales (including the medically relevant Enterobacteriaceae), to carry out comparative genomics of two SP locus synthesis regions, cps and kps, using 27,334 genomes from 45 genera. We identified high-quality cps loci in 22 genera and kps in 11 genera, around 4% of which were detected in multiple species. We found SP loci to be highly dynamic genetic entities: their evolution was driven by high rates of horizontal gene transfer (HGT), both of whole loci and component genes, and relaxed purifying selection, yielding large repertoires of SP diversity. In spite of that, we found the presence of (near-)identical locus structures in distant taxonomic backgrounds that could not be explained by recent exchange, pointing to long-term selective preservation of locus structures in some populations. Our results reveal differences in evolutionary dynamics driving SP diversity within different bacterial species, with lineages of Escherichia coli, Enterobacter hormaechei and Klebsiella aerogenes most likely to share SP loci via recent exchange; and lineages of Salmonella enterica, Citrobacter sakazakii and Serratia marcescens most likely to share SP loci via other mechanisms such as long-term preservation. Overall, the evolution of SP loci in Enterobacteriales is driven by a range of evolutionary forces and their dynamics and relative importance varies between different species

    Efficient Inference of Recent and Ancestral Recombination within Bacterial Populations

    Get PDF
    Prokaryotic evolution is affected by horizontal transfer of genetic material through recombination. Inference of an evolutionary tree of bacteria thus relies on accurate identification of the population genetic structure and recombination-derived mosaicism. Rapidly growing databases represent a challenge for computational methods to detect recombinations in bacterial genomes. We introduce a novel algorithm called fastGEAR which identifies lineages in diverse microbial alignments, and recombinations between them and from external origins. The algorithm detects both recent recombinations (affecting a few isolates) and ancestral recombinations between detected lineages (affecting entire lineages), thus providing insight into recombinations affecting deep branches of the phylogenetic tree. In simulations, fastGEAR had comparable power to detect recent recombinations and outstanding power to detect the ancestral ones, compared with state-of-the-art methods, often with a fraction of computational cost. We demonstrate the utility of the method by analyzing a collection of 616 whole-genomes of a recombinogenic pathogen Streptococcus pneumoniae, for which the method provided a high-resolution view of recombination across the genome. We examined in detail the penicillin-binding genes across the Streptococcus genus, demonstrating previously undetected genetic exchanges between different species at these three loci. Hence, fastGEAR can be readily applied to investigate mosaicism in bacterial genes across multiple species. Finally, fastGEAR correctly identified many known recombination hotspots and pointed to potential new ones. Matlab code and Linux/Windows executables are available at https://users.ics.aalto.fi/similar to pemartti/fastGEAR/ (last accessed February 6, 2017).Peer reviewe

    Shigella sonnei infection of zebrafish reveals that O-antigen mediates neutrophil tolerance and dysentery incidence.

    Get PDF
    Funder: Lister Institute of Preventive Medicine; funder-id: http://dx.doi.org/10.13039/501100001255Shigella flexneri is historically regarded as the primary agent of bacillary dysentery, yet the closely-related Shigella sonnei is replacing S. flexneri, especially in developing countries. The underlying reasons for this dramatic shift are mostly unknown. Using a zebrafish (Danio rerio) model of Shigella infection, we discover that S. sonnei is more virulent than S. flexneri in vivo. Whole animal dual-RNAseq and testing of bacterial mutants suggest that S. sonnei virulence depends on its O-antigen oligosaccharide (which is unique among Shigella species). We show in vivo using zebrafish and ex vivo using human neutrophils that S. sonnei O-antigen can mediate neutrophil tolerance. Consistent with this, we demonstrate that O-antigen enables S. sonnei to resist phagolysosome acidification and promotes neutrophil cell death. Chemical inhibition or promotion of phagolysosome maturation respectively decreases and increases neutrophil control of S. sonnei and zebrafish survival. Strikingly, larvae primed with a sublethal dose of S. sonnei are protected against a secondary lethal dose of S. sonnei in an O-antigen-dependent manner, indicating that exposure to O-antigen can train the innate immune system against S. sonnei. Collectively, these findings reveal O-antigen as an important therapeutic target against bacillary dysentery, and may explain the rapidly increasing S. sonnei burden in developing countries

    Heterogeneity in the Frequency and Characteristics of Homologous Recombination in Pneumococcal Evolution

    Get PDF
    The bacterium Streptococcus pneumoniae (pneumococcus) is one of the most important human bacterial pathogens, and a leading cause of morbidity and mortality worldwide. The pneumococcus is also known for undergoing extensive homologous recombination via transformation with exogenous DNA. It has been shown that recombination has a major impact on the evolution of the pathogen, including acquisition of antibiotic resistance and serotype-switching. Nevertheless, the mechanism and the rates of recombination in an epidemiological context remain poorly understood. Here, we proposed several mathematical models to describe the rate and size of recombination in the evolutionary history of two very distinct pneumococcal lineages, PMEN1 and CC180. We found that, in both lineages, the process of homologous recombination was best described by a heterogeneous model of recombination with single, short, frequent replacements, which we call micro-recombinations, and rarer, multi-fragment, saltational replacements, which we call macro-recombinations. Macro-recombination was associated with major phenotypic changes, including serotype-switching events, and thus was a major driver of the diversification of the pathogen. We critically evaluate biological and epidemiological processes that could give rise to the micro-recombination and macro-recombination processes

    Use of Shigella flexneri to study autophagy-cytoskeleton interactions.

    Get PDF
    Shigella flexneri is an intracellular pathogen that can escape from phagosomes to reach the cytosol, and polymerize the host actin cytoskeleton to promote its motility and dissemination. New work has shown that proteins involved in actin-based motility are also linked to autophagy, an intracellular degradation process crucial for cell autonomous immunity. Strikingly, host cells may prevent actin-based motility of S. flexneri by compartmentalizing bacteria inside 'septin cages' and targeting them to autophagy. These observations indicate that a more complete understanding of septins, a family of filamentous GTP-binding proteins, will provide new insights into the process of autophagy. This report describes protocols to monitor autophagy-cytoskeleton interactions caused by S. flexneri in vitro using tissue culture cells and in vivo using zebrafish larvae. These protocols enable investigation of intracellular mechanisms that control bacterial dissemination at the molecular, cellular, and whole organism level

    Horizontal gene transfer rate is not the primary determinant of observed antibiotic resistance frequencies in Streptococcus pneumoniae

    Get PDF
    The extent to which evolution is constrained by the rate at which horizontal gene transfer (HGT) allows DNA to move between genetic lineages is an open question, which we address in the context of antibiotic resistance in Streptococcus pneumoniae. We analyze microbiological, genomic, and epidemiological data from the largest-to-date sequenced pneumococcal carriage study in 955 infants from a refugee camp on the Thailand-Myanmar border. Using a unified framework, we simultaneously test prior hypotheses on rates of HGT and a key evolutionary covariate (duration of carriage) as determinants of resistance frequencies. We conclude that in this setting, there is little evidence of HGT playing a major role in determining resistance frequencies. Instead, observed resistance frequencies are best explained as the outcome of selection acting on a pool of variants, irrespective of the rate at which resistance determinants move between genetic lineages.ISSN:2375-254

    Correction to: Diversity and evolution of surface polysaccharide synthesis loci in Enterobacteriales.

    Get PDF
    In this article was given Cronobacter sakazakii incorrectly as Citrobacter sakazakii. The original article has been corrected

    Septins restrict inflammation and protect zebrafish larvae from Shigella infection

    Get PDF
    Shigella flexneri, a Gram-negative enteroinvasive pathogen, causes inflammatory destruction of the human intestinal epithelium. Infection by S. flexneri has been well-studied in vitro and is a paradigm for bacterial interactions with the host immune system. Recent work has revealed that components of the cytoskeleton have important functions in innate immunity and inflammation control. Septins, highly conserved cytoskeletal proteins, have emerged as key players in innate immunity to bacterial infection, yet septin function in vivo is poorly understood. Here, we use S. flexneri infection of zebrafish (Danio rerio) larvae to study in vivo the role of septins in inflammation and infection control. We found that depletion of Sept15 or Sept7b, zebrafish orthologs of human SEPT7, significantly increased host susceptibility to bacterial infection. Live-cell imaging of Sept15-depleted larvae revealed increasing bacterial burdens and a failure of neutrophils to control infection. Strikingly, Sept15-depleted larvae present significantly increased activity of Caspase-1 and more cell death upon S. flexneri infection. Dampening of the inflammatory response with anakinra, an antagonist of interleukin-1 receptor (IL-1R), counteracts Sept15 deficiency in vivo by protecting zebrafish from hyper-inflammation and S. flexneri infection. These findings highlight a new role for septins in host defence against bacterial infection, and suggest that septin dysfunction may be an underlying factor in cases of hyper-inflammation
    corecore