228 research outputs found

    EUROMICRO - Context-based personalization of Web services composition and provisioning

    Get PDF
    This work presents an approach that aims at personalizing Web services composition and provisioning using context. Composition addresses the situation of a user\u27s request that cannot be satisfied by any available service, and thus requires the combination of several Web services. Provisioning focuses on the deployment of Web services according to users\u27 preferences. A Web service is an accessible application that other applications and humans can discover and trigger. Context is the information that characterizes the interactions between humans, applications, and the surrounding environment. Web services are subject to personalization if there is a need of accommodating users\u27 preferences during service performance and outcome delivery. To be able to track personalization in terms of what happened, what is happening, and what might happen three types of context are devised, and they are referred to as user-, Web service-, and resource-context

    Context-oriented and transaction-based service provisioning

    Get PDF
    This paper presents our approach for service provisioning in pervasive computing environments. The presented approach is based on the usage of context-aware features and transactions during the discovery and the deployment of composite services. Context ensures that the best service offers are selected to participate in a service composition. Transactions help in improving the reliability and efficiency of the composite services

    'Nano' Morphology and Element Signatures of Early Life on Earth: A New Tool for Assessing Biogenicity

    Get PDF
    The relatively young technology of NanoSIMS is unlocking an exciting new level of information from organic matter in ancient sediments. We are using this technique to characterize Proterozoic organic material that is clearly biogenic as a guide for interpreting controversial organic structures in either terrestrial or extraterrestrial samples. NanoSIMS is secondary ion mass spectrometry for trace element and isotope analysis at sub-micron resolution. In 2005, Robert et al. [1] combined NanoSIMS element maps with optical microscopic imagery in an effort to develop a new method for assessing biogenicity of Precambrian structures. The ability of NanoSIMS to map simultaneously the distribution of organic elements with a 50 nm spatial resolution provides new biologic markers that could help define the timing of life s development on Earth. The current study corroborates the work of Robert et al. and builds on their study by using NanoSIMS to map C, N (as CN), S, Si and O of both excellently preserved microfossils and less well preserved, non-descript organics in Proterozoic chert from the ca. 0.8 Ga Bitter Springs Formation of Australia

    Diversification in the Archean Biosphere: Insight from NanoSIMS of Microstructures in the Farrel Quartzite of Australia

    Get PDF
    The nature of early life on Earth is difficult to assess because potential Early Archean biosignatures are commonly poorly preserved. Interpretations of such materials have been contested, and abiotic or epigenetic derivations have been proposed (summarized in [1]). Yet, an understanding of Archean life is of astrobiological importance, as knowledge of early evolutionary processes on Earth could provide insight to development of life on other planets. A recently-discovered assemblage of organic microstructures in approx.3 Ga charts of the Farrel Quartzite (FQ) of Australia [2-4] includes unusual spindle-like forms and a variety of spheroids. If biogenicity and syngeneity of these forms could be substantiated, the FQ assemblage would provide a new view of Archean life. Our work uses NanoSIMS to further assess the biogenicity and syngeneity of FQ microstructures. In prior NanoSIMS studies [5-6], we gained an understanding of nano-scale elemental distributions in undisputed microfossils from the Neoproterozoic Bitter Springs Formation of Australia. Those results provide a new tool with which to evaluate poorly preserved materials that we might find in Archean sediments and possibly in extraterrestrial materials. We have applied this tool to the FQ forms

    Chemical Mapping of Proterozoic Organic Matter at Sub-Micron Spatial Resolution

    Get PDF
    We have used a NanoSIMS ion microprobe to map sub-micron-scale distributions of carbon, nitrogen, sulfur, silicon, and oxygen in organic microfossils and laminae from the approximately 0.85 Ga Bitter Springs Formation of Australia. The data provide clues about the original chemistry of the microfossils, the silicification process, and biosignatures of specific microorganisms and microbial communities. Chemical maps of fossil unicells and filaments reveal distinct wall-and sheath-like structures enriched in C, N and S, consistent with their accepted biological origin. Surprisingly, organic laminae, previously considered to be amorphous, also exhibit filamentous and apparently compressed spheroidal structures defined by strong enrichments in C, N and S. By analogy to data from the well-preserved microfossils, these structures are interpreted as being of biological origin, most likely representing densely packed remnants of microbial mats. Because the preponderance of organic matter in Precambrian sediments is similarly "amorphous," our findings open a large body of generally neglected material to in situ structural, chemical, and isotopic study. Our results also offer new criteria for assessing biogenicity of problematic kerogenous materials and thus can be applied to assessments of poorly preserved or fragmentary organic residues in early Archean sediments and any that might occur in meteorites or other extraterrestrial samples

    NanoSIMS opens a New Window for Deciphering Organic Matter in Terrestrial and Extraterrestrial Samples

    Get PDF
    Recognition of the earliest morphological or chemical evidence of terrestrial life has proved to be challenging, as organic matter in ancient rocks is commonly fragmentary and difficult to distinguish from abiotically-produced materials (Schopf, 1993; Van Zuilen et al., 2002; Altermann & Kazmierczak, 2003; Cady et al., 2003; Brasier et al., 2002, 2004, 2005; Hofmann, 2004; Skrzypczak et al., 2004, 2005). Yet, the ability to identify remnants of earliest life is critical to our understanding of the timing of life's origin on earth, the nature of earliest terrestrial life, and recognition of potential remnants of microbial life that might occur in extraterrestrial materials. The search for earliest life on Earth now extends to early Archean organic remains; these tend to be very poorly preserved and considerably more difficult to interpret than the delicately permineralized microfossils known from many Proterozoic deposits. Thus, recent efforts have been directed toward finding biosignatures that can help distinguish fragmentary remnants of ancient microbes from either pseudofossils or abiotic organic materials that may have formed hydrothermally or in extraterrestrial processes (House et al., 2000; Boyce et al., 2001; Kudryavtsev et al., 2001; Schopf, 2002; Schopf et al., 2002, 2005a,b; Cady et al., 2003; Garc a-Ruiz et al., 2003; Hofmann, 2004; Brasier et al., 2005; Rushdi and Simoneit, 2005; Skrzypczak et al., 2005). An exciting area of biosignature research involves the developing technology of NanoSIMS. NanoSIMS is secondary ion mass spectrometry (SIMS) for ultrafine feature, elemental and isotopic analysis. Its resolution approaches 0.05 micrometers for element mapping, which is 10-50 times finer than that attainable with conventional SIMS or electron microprobes. Consequently, NanoSIMS has the potential to reveal previously unknown, chemical and structural characteristics of organic matter preserved in geologic materials. Robert et al. (2005) were the first to combine NanoSIMS element maps with optical microscopic imagery in an effort to develop a new method for assessing biogenicity. They showed that the ability to simultaneously map the distribution of organic elements [such as carbon (C), nitrogen (N), and sulfur (S)] and compare those element distributions with optically recognizable, cellularly preserved fossils could provide significant new insights into the origin of organic materials in ancient sediments. This chapter details a recent NanoSIMS study which was designed to acquire new data relevant to establishing critical biosignatures (Oehler et al., 2006a-c). In this study, NanoSIMS was used to characterize element distributions of spheroidal and filamentous microfossils and associated organic laminae in chert from the approx. 0.85 billion year old (Ga) Bitter Springs Formation of Australia. Previous work established preservation of a diverse microbiota in the Bitter Springs Formation (Schopf, 1968; Schopf and Blacic, 1971), and there is no dispute within the scientific community regarding the biogenicity of any of the Bitter Springs structures evaluated in this new study. Thus, the NanoSIMS results described below provide new insight into - and can be used as a guide for assessing - the origin of less well understood organic materials that may occur in early Archean samples and in meteorites or other extraterrestrial samples

    "Nano" Scale Biosignatures and the Search for Extraterrestrial Life

    Get PDF
    A critical step in the search for remnants of potential life forms on other planets lies in our ability to recognize indigenous fragments of ancient microbes preserved in some of Earth's oldest rocks. To this end, we are building a database of nano-scale chemical and morphological characteristics of some of Earth's oldest organic microfossils. We are primarily using the new technology of Nano-Secondary ion mass spectrometry (NanoSIMS) which provides in-situ, nano-scale elemental analysis of trace quantities of organic residues. The initial step was to characterize element composition of well-preserved, organic microfossils from the late Proterozoic (0.8 Ga) Bitter Springs Formation of Australia. Results from that work provide morphologic detail and nitrogen/carbon ratios that appear to reflect the well-established biological origin of these 0.8 Ga fossils

    Conditions for Set Agreement with an Application to Synchronous Systems

    Get PDF
    The kk-set agreement problem is a generalization of the consensus problem: considering a system made up of nn processes where each process proposes a value, each non-faulty process has to decide a value such that a decided value is a proposed value, and no more than kk different values are decided. While this problem cannot be solved in an asynchronous system prone to tt process crashes when t≥kt \geq k, it can always be solved in a synchronous system; ⌊tk⌋+1\lfloor \frac{t}{k} \rfloor +1 is then a lower bound on the number of rounds (consecutive communication steps) for the non-faulty processes to decide. The {\it condition-based} approach has been introduced in the consensus context. Its aim was to both circumvent the consensus impossibility in asynchronous systems, and allow for more efficient consensus algorithms in synchronous systems. This paper addresses the condition-based approach in the context of the kk-set agreement problem. It has two main contributions. The first is the definition of a framework that allows defining conditions suited to the ℓ\ell-set agreement problem. More precisely, a condition is defined as a set of input vectors such that each of its input vectors can be seen as ``encoding'' ℓ\ell values, namely, the values that can be decided from that vector. A condition is characterized by the parameters tt, ℓ\ell, and a parameter denoted dd such that the greater d+ℓd+\ell, the least constraining the condition (i.e., it includes more and more input vectors when d+ℓd+\ell increases, and there is a condition that includes all the input vectors when d+ℓ>td+\ell>t). The conditions characterized by the triple of parameters tt, dd and ℓ\ell define the class of conditions denoted Std,ℓ{\cal S}_t^{d,\ell}, 0≤d≤t0\leq d\leq t, 1≤ℓ≤n−11\leq \ell \leq n-1 . The properties of the sets Std,ℓ{\cal S}_t^{d,\ell}are investigated, and it is shown that they have a lattice structure. The second contribution is a generic synchronous kk-set agreement algorithm based on a condition C∈Std,ℓC\in {\cal S}_t^{d,\ell}, i.e., a condition suitedto the ℓ\ell-set agreement problem, for ℓ≤k\ell \leq k. This algorithm requires at most ⌊d−1+ℓk⌋+1\left\lfloor \frac{d-1+\ell}{k} \right\rfloor +1 rounds when the input vector belongs to CC, and ⌊tk⌋+1\left\lfloor \frac{t}{k} \right\rfloor +1 rounds otherwise. (Interestingly, this algorithm includes as particular cases the classical synchronous kk-set agreement algorithm that requires ⌊tk⌋+1\left\lfloor \frac{t}{k} \right\rfloor+1 rounds (case d=td=t and ℓ=1\ell=1), and the synchronous consensus condition-based algorithm that terminates in d+1d+1 rounds when the input vector belongs to the condition, and in t+1t+1 rounds otherwise (case k=ℓ=1k=\ell=1).
    • …
    corecore