1,007 research outputs found
The ‘credibility paradox’ in China’s science communication: Views from scientific practitioners
In contrast to increasing debates on China’s rising status as a global scientific power, issues of China’s science communication remain under-explored. Based on 21 in-depth interviews in three cities, this article examines Chinese scientists’ accounts of the entangled web of influence which conditions the process of how scientific knowledge achieves (or fails to achieve) its civic authority. A main finding of this study is a ‘credibility paradox’ as a result of the over-politicisation of science and science communication in China. Respondents report that an absence of visible institutional endorsements renders them more public credibility and better communication outcomes. Thus, instead of exploiting formal channels of science communication, scientists interviewed were more keen to act as ‘informal risk communicators’ in grassroots and private events. Chinese scientists’ perspectives on how to earn public support of their research sheds light on the nature and impact of a ‘civic epistemology’ in an authoritarian state
S100A1: A Multifaceted Therapeutic Target in Cardiovascular Disease
Cardiovascular disease is the leading cause of death worldwide, showing a dramatically growing prevalence. It is still associated with a poor clinical prognosis, indicating insufficient long-term treatment success of currently available therapeutic strategies. Investigations of the pathomechanisms underlying cardiovascular disorders uncovered the Ca2+ binding protein S100A1 as a critical regulator of both cardiac performance and vascular biology. In cardiomyocytes, S100A1 was found to interact with both the sarcoplasmic reticulum ATPase (SERCA2a) and the ryanodine receptor 2 (RyR2), resulting in substantially improved Ca2+ handling and contractile performance. Additionally, S100A1 has been described to target the cardiac sarcomere and mitochondria, leading to reduced pre-contractile passive tension as well as enhanced oxidative energy generation. In endothelial cells, molecular analyses revealed a stimulatory effect of S100A1 on endothelial NO production by increasing endothelial nitric oxide synthase activity. Emphasizing the pathophysiological relevance of S100A1, myocardial infarction in S100A1 knockout mice resulted in accelerated transition towards heart failure and excessive mortality in comparison with wild-type controls. Mice lacking S100A1 furthermore displayed significantly elevated blood pressure values with abrogated responsiveness to bradykinin. On the other hand, numerous studies in small and large animal heart failure models showed that S100A1 overexpression results in reversed maladaptive myocardial remodeling, long-term rescue of contractile performance, and superior survival in response to myocardial infarction, indicating the potential of S100A1-based therapeutic interventions. In summary, elaborate basic and translational research established S100A1 as a multifaceted therapeutic target in cardiovascular disease, providing a promising novel therapeutic strategy to future cardiologists
Primary myoblasts from intrauterine growth-restricted fetal sheep exhibit intrinsic dysfunction of proliferation and differentiation that coincides with enrichment of inflammatory cytokine signaling pathways
Intrauterine growth restriction (IUGR) is linked to lifelong reductions in muscle mass due to intrinsic functional deficits in myoblasts, but the mechanisms underlying these deficits are not known. Our objective was to determine if the deficits were associated with changes in inflammatory and adrenergic regulation of IUGR myoblasts, as was previously observed in IUGR muscle. Primary myoblasts were isolated from IUGR fetal sheep produced by hyperthermia-induced placental insufficiency (PI-IUGR; n = 9) and their controls (n = 9) and from IUGR fetal sheep produced by maternofetal inflammation (MI-IUGR; n = 6) and their controls (n = 7). Proliferation rates were less (P \u3c 0.05) for PI-IUGR myoblasts than their controls and were not affected by incubation with IL-6, TNF-α, norepinephrine, or insulin. IκB kinase inhibition reduced (P \u3c 0.05) proliferation of control myoblasts modestly in basal media but substantially in TNF-α-added media and reduced (P \u3c 0.05) PI-IUGR myoblast proliferation substantially in basal and TNF-α-added media. Proliferation was greater (P \u3c 0.05) for MI-IUGR myoblasts than their controls and was not affected by incubation with TNF-α. Insulin increased (P \u3c 0.05) proliferation in both MI-IUGR and control myoblasts. After 72-h differentiation, fewer (P \u3c 0.05) PI-IUGR myoblasts were myogenin+ than controls in basal and IL-6 added media but not TNF-α-added media. Fewer (P \u3c 0.05) PI-IUGR myoblasts were desmin+ than controls in basal media only. Incubation with norepinephrine did not affect myogenin+ or desmin+ percentages, but insulin increased (P \u3c 0.05) both markers in control and PI-IUGR myoblasts. After 96-h differentiation, fewer (P \u3c 0.05) MI-IUGR myoblasts were myogenin+ and desmin+ than controls regardless of media, although TNF-α reduced (P \u3c 0.05) desmin+ myoblasts for both groups. Differentiated PI-IUGR myoblasts had greater (P \u3c 0.05) TNFR1, ULK2, and TNF-α-stimulated TLR4 gene expression, and PI-IUGR semitendinosus muscle had greater (P \u3c 0.05) TNFR1 and IL6 gene expression, greater (P \u3c 0.05) c-Fos protein, and less (P \u3c 0.05) IκBα protein. Differentiated MI-IUGR myoblasts had greater (P \u3c 0.05) TNFR1 and IL6R gene expression, tended to have greater (P = 0.07) ULK2 gene expression, and had greater (P \u3c 0.05) β-catenin protein and TNF-α-stimulated phosphorylation of NFκB. We conclude that these enriched components of TNF-α/TNFR1/NFκB and other inflammatory pathways in IUGR myoblasts contribute to their dysfunction and help explain impaired muscle growth in the IUGR fetus.
Lay Summary-- Myoblasts are stems cells whose functional capacity can limit muscle growth. However, stressful intrauterine conditions cause these cells to be intrinsically dysfunctional. This restricts muscle growth capacity, leading to intrauterine growth restriction (IUGR) of the fetus, low birth weight, and less muscle mass after birth. Consequently, meat yield is reduced in IUGR-born food animals and glucose homeostasis is impaired in IUGR-born humans, which contributes to metabolic dysfunction. Intrinsic dysfunction of IUGR myoblasts has been previously observed, but the fetal programming changes (i.e., permanent changes in the development of cellular mechanisms that explains different functional outcomes) have not been identified. This study shows that one mechanism is the enhancement of signaling pathways for TNF-α and other inflammatory cytokines. These cytokines have roles in stress responses and regulation of muscle growth. Programmed enhancement of these pathways means that IUGR myoblasts are more responsive to even normal amounts of circulating cytokines. Unfortunately, the primary response of myoblasts to cytokines is slower differentiation (i.e., cellular transformation necessary for muscle growth). Programmed enhancement of this response directly impedes myoblast-dependent muscle growth, and the deficit is lifelong. However, identifying this mechanism is a fundamental step for developing strategies to improve muscle growth in low birth weight offspring
Negative emotional stimuli reduce contextual cueing but not response times in inefficient search
In visual search, previous work has shown that negative stimuli narrow the focus of attention and speed reaction times (RTs). This paper investigates these two effects by first asking whether negative emotional stimuli narrow the focus of attention to reduce the learning of a display context in a contextual cueing task and, second, whether exposure to negative stimuli also reduces RTs in inefficient search tasks. In Experiment 1, participants viewed either negative or neutral images (faces or scenes) prior to a contextual cueing task. In a typical contextual cueing experiment, RTs are reduced if displays are repeated across the experiment compared with novel displays that are not repeated. The results showed that a smaller contextual cueing effect was obtained after participants viewed negative stimuli than when they viewed neutral stimuli. However, in contrast to previous work, overall search RTs were not faster after viewing negative stimuli (Experiments 2 to 4). The findings are discussed in terms of the impact of emotional content on visual processing and the ability to use scene context to help facilitate search
Bioinformatics and the politics of innovation in the life sciences: Science and the state in the United Kingdom, China, and India
The governments of China, India, and the United Kingdom are unanimous in their belief that bioinformatics should supply the link between basic life sciences research and its translation into health benefits for the population and the economy. Yet at the same time, as ambitious states vying for position in the future global bioeconomy they differ considerably in the strategies adopted in pursuit of this goal. At the heart of these differences lies the interaction between epistemic change within the scientific community itself and the apparatus of the state. Drawing on desk-based research and thirty-two interviews with scientists and policy makers in the three countries, this article analyzes the politics that shape this interaction. From this analysis emerges an understanding of the variable capacities of different kinds of states and political systems to work with science in harnessing the potential of new epistemic territories in global life sciences innovation
Failure to Detect Critical Auditory Alerts in the Cockpit: Evidence for Inattentional Deafness
Objective: The aim of this study was to test whether inattentional deafness to critical alarms would be observed in a simulated cockpit. Background: The inability of pilots to detect unexpected changes in their auditory environment (e.g., alarms) is a major safety problem in aeronautics. In aviation, the lack of response to alarms is usually not attributed to attentional limitations, but rather to pilots choosing to ignore such warnings due to decision biases, hearing issues, or conscious risk taking. Method: Twenty-eight general aviation pilots performed two landings in a flight simulator. In one scenario an auditory alert was triggered alone, whereas in the other the auditory alert occurred while the pilots dealt with a critical windshear. Results: In the windshear scenario, 11 pilots (39.3%) did not report nor react appropriately to the alarm whereas all the pilots perceived the auditory warning in the no-windshear scenario. Also, of those pilots who were first exposed to the no-windshear scenario and detected the alarm, only three suffered from inattentional deafness in the subsequent windshear scenario. Conclusion: These findings establish inattentional deafness as a cognitive phenomenon that is critical for air safety. Pre-exposure to a critical event triggering an auditory alarm can enhance alarm detection when a similar event is encountered subsequently. Application: Case-based learning is a solution to mitigate auditory alarm misperception
Daily Injection of the β2 Adrenergic Agonist Clenbuterol Improved Poor Muscle Growth and Body Composition in Lambs Following Heat Stress-Induced Intrauterine Growth Restriction
Background: Intrauterine growth restriction (IUGR) is associated with reduced β2 adrenergic sensitivity, which contributes to poor postnatal muscle growth. The objective of this study was to determine if stimulating β2 adrenergic activity postnatal would rescue deficits in muscle growth, body composition, and indicators of metabolic homeostasis in IUGR offspring.
Methods: Time-mated ewes were housed at 40°C from day 40 to 95 of gestation to produce IUGR lambs. From birth, IUGR lambs received daily IM injections of 0.8 μg/kg clenbuterol HCl (IUGR+CLEN; n = 11) or saline placebo (IUGR; n = 12). Placebo-injected controls (n = 13) were born to pair-fed thermoneutral ewes. Biometrics were assessed weekly and body composition was estimated by ultrasound and bioelectrical impedance analysis (BIA). Lambs were necropsied at 60 days of age.
Results: Bodyweights were lighter (p ≤ 0.05) for IUGR and IUGR+CLEN lambs than for controls at birth, day 30, and day 60. Average daily gain was less (p ≤ 0.05) for IUGR lambs than controls and was intermediate for IUGR+CLEN lambs. At day 58, BIA-estimated whole-body fat-free mass and ultrasound-estimated loin eye area were less (p ≤ 0.05) for IUGR but not IUGR+CLEN lambs than for controls. At necropsy, loin eye area and flexor digitorum superficialis muscles were smaller (p ≤ 0.05) for IUGR but not IUGR+CLEN lambs than for controls. Longissimus dorsi protein content was less (p ≤ 0.05) and fat-to-protein ratio was greater (p ≤ 0.05) for IUGR but not IUGR+CLEN lambs than for controls. Semitendinosus from IUGR lambs had less (p ≤ 0.05) β2 adrenoreceptor content, fewer (p ≤ 0.05) proliferating myoblasts, tended to have fewer (p = 0.08) differentiated myoblasts, and had smaller (p ≤ 0.05) muscle fibers than controls. Proliferating myoblasts and fiber size were recovered (p ≤ 0.05) in IUGR+CLEN lambs compared to IUGR lambs, but β2 adrenoreceptor content and differentiated myoblasts were not recovered. Semitendinosus lipid droplets were smaller (p ≤ 0.05) in size for IUGR lambs than for controls and were further reduced (p ≤ 0.05) in size for IUGR+CLEN lambs.
Conclusion: These findings show that clenbuterol improved IUGR deficits in muscle growth and some metabolic parameters even without recovering the deficit in β2 adrenoreceptor content. We conclude that IUGR muscle remained responsive to β2 adrenergic stimulation postnatal, which may be a strategic target for improving muscle growth and body composition in IUGR-born offspring
Measurement of Longitudinal Spin Transfer to Lambda Hyperons in Deep-Inelastic Lepton Scattering
Spin transfer in deep-inelastic Lambda electroproduction has been studied
with the HERMES detector using the 27.6 GeV polarized positron beam in the HERA
storage ring. For an average fractional energy transfer = 0.45, the
longitudinal spin transfer from the virtual photon to the Lambda has been
extracted. The spin transfer along the Lambda momentum direction is found to be
0.11 +/- 0.17 (stat) +/- 0.03 (sys); similar values are found for other
possible choices for the longitudinal spin direction of the Lambda. This result
is the most precise value obtained to date from deep-inelastic scattering with
charged lepton beams, and is sensitive to polarized up quark fragmentation to
hyperon states. The experimental result is found to be in general agreement
with various models of the Lambda spin content, and is consistent with the
assumption of helicity conservation in the fragmentation process.Comment: 8 pages, 3 figures; new version has an expanded discussion and small
format change
Stress induced polarization of immune-neuroendocrine phenotypes in Gallus gallus
Immune-neuroendocrine phenotypes (INPs) stand for population subgroups differing in immune-neuroendocrine interactions. While mammalian INPs have been characterized thoroughly in rats and humans, avian INPs were only recently described in Coturnix coturnix (quail). To assess the scope of this biological phenomenon, herein we characterized INPs in Gallus gallus (a domestic hen strain submitted to a very long history of strong selective breeding pressure) and evaluated whether a social chronic stress challenge modulates the individuals’ interplay affecting the INP subsets and distribution. Evaluating plasmatic basal corticosterone, interferon-γ and interleukin-4 concentrations, innate/acquired leukocyte ratio, PHA-P skin-swelling and induced antibody responses, two opposite INP profiles were found: LEWIS-like (15% of the population) and FISCHER-like (16%) hens. After chronic stress, an increment of about 12% in each polarized INP frequency was found at expenses of a reduction in the number of birds with intermediate responses. Results show that polarized INPs are also a phenomenon occurring in hens. The observed inter-individual variation suggest that, even after a considerable selection process, the population is still well prepared to deal with a variety of immune-neuroendocrine challenges. Stress promoted disruptive effects, leading to a more balanced INPs distribution, which represents a new substrate for challenging situations.Fil: Nazar, Franco Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; ArgentinaFil: Estevez, Inma. Centro de Investigación. Neiker - Tecnalia; EspañaFil: Correa, Silvia Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Marin, Raul Hector. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; Argentin
- …