310 research outputs found

    El aire: hábitat y medio de transmisión de microorganismos

    Get PDF
    La atmósfera no tiene una microbiota autóctona pero es un medio para la dispersión de muchos tipos de microorganismos (esporas, bacterias, virus y hongos), procedentes de otros ambientes. Algunos han creado adaptaciones especializadas que favorecen su supervivencia y permanencia. Los microorganismos dispersados por el aire tiene una gran importancia biológica y económica. Producen enfermedades en plantas, animales y humanos, causan alteración de alimentos y materiales orgánicos y contribuyen al deterioro y corrosión de monumentos y metales. La Microbiología del aire comienza en el siglo XIX, con Pasteur y Miquel que diseñaron métodos para estudiar los microorganismos en el aire y descubrir la causa de algunas enfermedades. Desde entonces numerosos investigadores han trabajado en este campo tanto en el aire exterior como en recintos cerrados. Las enfermedades transmitidas por el aire, producidas por bacterias, virus y hongos, son las respiratorias (neumonía, tosferina, tuberculosis, legionelosis, resfriado, gripe), sistémicas (meningitis, sarampión, varicela, micosis) y alérgicas

    Analysis of Devices for Thermal Energy Consumption Monitoring and Design of A Bench Test for their Characterization

    Get PDF
    Abstract The mandatory introduction in Italy of the accounting of consumption for heating and domestic hot water in centralized heating systems has determined the introduction on the market of many commercial solutions based on different measuring principles. In order to find a proper method for testing the solutions proposed by the vendors, in the present work the uncertainty of the results reachable with the different types of measuring devices has been evaluated. Based on the best theoretical results achievable with the different types of devices the scheme of a test bed for the characterization of commercial systems is proposed

    PLAN DE ACCIÓN PARA LA CONSERVACIÓN DEL AGUARÁ GUAZÚ EN SANTA FE VERSIÓN 01 PERÍODO 2009 – 2014

    Get PDF
    El presente plan fue realizado usando de base los capítulos 1, 2, 3 y 4 del trabajo: Estado  de  conocimiento  y  conservación  del  aguará  guazú  (Chrysocyon  brachyurus)  en  la  provincia  de Santa Fe, Argentina. . Se tomó como base orientaciones generales de Margoluis y Salafsky (1998) y en la estructura general se siguió de modelo práctico a Jiménez Pérez (2006). Para asignar la prioridad se utilizaron las categorías desarrolladas por el Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (Baz Hughes, et al. 2006), estas son: Esencial: una actividad específica cuyo cumplimiento es necesario para evitar una declinación de las poblaciones que pueda llevar a la extinción de la especie en la naturaleza y/o en cautiverio. Alta: una actividad específica cuyo cumplimiento es necesario para evitar una declinación poblacional de más del 20% de una población en 20 años o menos. Media: una actividad específica cuyo cumplimiento es necesario para evitar una declinación poblacional de hasta el 20% de una población en 20 años o menos. Baja: una actividad específica cuyo cumplimiento es necesario para prevenir declinaciones poblacionales  locales o que se estima que dicha acción apenas tiene un pequeño impacto sobre las poblaciones en un área grande. Se trata de una planificación para cinco años pues la experiencia indica que a Santa Fe le falta mucho  trabajo  y experiencia para  fortalecer  su  forma de  ver  y de actuar en  la  recuperación de  las especies amenazadas.  Por ejemplo muchas de  las amenazas  indirectas (generadoras de amenazas directas) que afectan a esta especie son producto de  la  falta de coordinación, compromiso, metas y objetivos comunes entre  los profesionales de  la conservación, sea sociedad civil u organismos estatales. Es así como se pretende en un corto plazo y monitoreando constantemente, las acciones y sus resultados, lograr un plan a futuro de mediano y largo plazo.Fil: Biassati, R. Secreataría de Medio Ambiente de Santa Fe; ArgentinaFil: Larriera, Alejandro. Secretaría de Medio Ambiente de Santa Fe; ArgentinaFil: Mosso, E.. Secretaría de Medio Ambiente de Santa Fe; ArgentinaFil: Rozztti, J.C.. Secretaría de Medio Ambiente de Santa Fe; ArgentinaFil: Moggia, L.. Secretaría de Medio Ambiente, Santa Fe; ArgentinaFil: Pautasso, A.. Museo de Cs Naturales Florentino Ameghino; ArgentinaFil: Nebozuk, M. A.. Museo Provincial de Ciencias Naturales Ángel Gallardo; ArgentinaFil: Walker, C.. Universidad Nacional del Litoral; ArgentinaFil: Ramirez, C.. Universidad Nacional del Litoral; ArgentinaFil: Mirol, P.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"; ArgentinaFil: Raimondi, Vanina Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"; ArgentinaFil: Beldomenico, Pablo Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - Santa Fe. Instituto de Ciencias Veterinarias del Litoral; Argentina. Laboratorio de Ecología de Enfermedades; ArgentinaFil: Eberhardt, María Ayelen Teresita. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - Santa Fe. Instituto de Ciencias Veterinarias del Litoral; Argentina. Laboratorio de Ecología de Enfermedades; ArgentinaFil: Manzzoli, D.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - Santa Fe. Instituto de Ciencias Veterinarias del Litoral; Argentina. Laboratorio de Ecología de Enfermedades; ArgentinaFil: Correa, A.. Universidad Nacional del Litoral. Facultad de Ciencias Veterinarias; ArgentinaFil: Terragona, E.. Universidad Nacional del Litoral. Facultad de Ciencias Veterinarias; ArgentinaFil: Magni, C.. Universidad Nacional del Litoral. Facultad de Ciencias Veterinarias; ArgentinaFil: Alvarado, S.. Universidad Nacional del Litoral. Facultad de Ciencias Veterinarias; ArgentinaFil: Barengo, E.. Universidad Nacional del Litoral. Facultad de Ciencias Veterinarias; Argentin

    Graz Endocrine Causes of Hypertension (GECOH) study: a diagnostic accuracy study of aldosterone to active renin ratio in screening for primary aldosteronism

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Primary aldosteronism (PA) affects approximately 5 to 10% of all patients with arterial hypertension and is associated with an excess rate of cardiovascular complications that can be significantly reduced by a targeted treatment. There exists a general consensus that the aldosterone to renin ratio should be used as a screening tool but valid data about the accuracy of the aldosterone to renin ratio in screening for PA are sparse. In the Graz endocrine causes of hypertension (GECOH) study we aim to prospectively evaluate diagnostic procedures for PA.</p> <p>Methods and design</p> <p>In this single center, diagnostic accuracy study we will enrol 400 patients that are routinely referred to our tertiary care center for screening for endocrine hypertension. We will determine the aldosterone to active renin ratio (AARR) as a screening test. In addition, all study participants will have a second determination of the AARR and will undergo a saline infusion test (SIT) as a confirmatory test. PA will be diagnosed in patients with at least one AARR of ≥ 5.7 ng/dL/ng/L (including an aldosterone concentration of ≥ 9 ng/dL) who have an aldosterone level of ≥ 10 ng/dL after the saline infusion test. As a primary outcome we will calculate the receiver operating characteristic curve of the AARR in diagnosing PA. Secondary outcomes include the test characteristics of the saline infusion test involving a comparison with 24 hours urine aldosterone levels and the accuracy of the aldosterone to renin activity ratio in diagnosing PA. In addition we will evaluate whether the use of beta-blockers significantly alters the accuracy of the AARR and we will validate our laboratory methods for aldosterone and renin.</p> <p>Conclusion</p> <p>Screening for PA with subsequent targeted treatment is of great potential benefit for hypertensive patients. In the GECOH study we will evaluate a standardised procedure for screening and diagnosing of this disease.</p

    ITALIAN CANCER FIGURES - REPORT 2015: The burden of rare cancers in Italy = I TUMORI IN ITALIA - RAPPORTO 2015: I tumori rari in Italia

    Get PDF
    OBJECTIVES: This collaborative study, based on data collected by the network of Italian Cancer Registries (AIRTUM), describes the burden of rare cancers in Italy. Estimated number of new rare cancer cases yearly diagnosed (incidence), proportion of patients alive after diagnosis (survival), and estimated number of people still alive after a new cancer diagnosis (prevalence) are provided for about 200 different cancer entities. MATERIALS AND METHODS: Data herein presented were provided by AIRTUM population- based cancer registries (CRs), covering nowadays 52% of the Italian population. This monograph uses the AIRTUM database (January 2015), which includes all malignant cancer cases diagnosed between 1976 and 2010. All cases are coded according to the International Classification of Diseases for Oncology (ICD-O-3). Data underwent standard quality checks (described in the AIRTUM data management protocol) and were checked against rare-cancer specific quality indicators proposed and published by RARECARE and HAEMACARE (www.rarecarenet.eu; www.haemacare.eu). The definition and list of rare cancers proposed by the RARECAREnet "Information Network on Rare Cancers" project were adopted: rare cancers are entities (defined as a combination of topographical and morphological codes of the ICD-O-3) having an incidence rate of less than 6 per 100,000 per year in the European population. This monograph presents 198 rare cancers grouped in 14 major groups. Crude incidence rates were estimated as the number of all new cancers occurring in 2000-2010 divided by the overall population at risk, for males and females (also for gender-specific tumours).The proportion of rare cancers out of the total cancers (rare and common) by site was also calculated. Incidence rates by sex and age are reported. The expected number of new cases in 2015 in Italy was estimated assuming the incidence in Italy to be the same as in the AIRTUM area. One- and 5-year relative survival estimates of cases aged 0-99 years diagnosed between 2000 and 2008 in the AIRTUM database, and followed up to 31 December 2009, were calculated using complete cohort survival analysis. To estimate the observed prevalence in Italy, incidence and follow-up data from 11 CRs for the period 1992-2006 were used, with a prevalence index date of 1 January 2007. Observed prevalence in the general population was disentangled by time prior to the reference date (≤2 years, 2-5 years, ≤15 years). To calculate the complete prevalence proportion at 1 January 2007 in Italy, the 15-year observed prevalence was corrected by the completeness index, in order to account for those cancer survivors diagnosed before the cancer registry activity started. The completeness index by cancer and age was obtained by means of statistical regression models, using incidence and survival data available in the European RARECAREnet data. RESULTS: In total, 339,403 tumours were included in the incidence analysis. The annual incidence rate (IR) of all 198 rare cancers in the period 2000-2010 was 147 per 100,000 per year, corresponding to about 89,000 new diagnoses in Italy each year, accounting for 25% of all cancer. Five cancers, rare at European level, were not rare in Italy because their IR was higher than 6 per 100,000; these tumours were: diffuse large B-cell lymphoma and squamous cell carcinoma of larynx (whose IRs in Italy were 7 per 100,000), multiple myeloma (IR: 8 per 100,000), hepatocellular carcinoma (IR: 9 per 100,000) and carcinoma of thyroid gland (IR: 14 per 100,000). Among the remaining 193 rare cancers, more than two thirds (No. 139) had an annual IR &lt;0.5 per 100,000, accounting for about 7,100 new cancers cases; for 25 cancer types, the IR ranged between 0.5 and 1 per 100,000, accounting for about 10,000 new diagnoses; while for 29 cancer types the IR was between 1 and 6 per 100,000, accounting for about 41,000 new cancer cases. Among all rare cancers diagnosed in Italy, 7% were rare haematological diseases (IR: 41 per 100,000), 18% were solid rare cancers. Among the latter, the rare epithelial tumours of the digestive system were the most common (23%, IR: 26 per 100,000), followed by epithelial tumours of head and neck (17%, IR: 19) and rare cancers of the female genital system (17%, IR: 17), endocrine tumours (13% including thyroid carcinomas and less than 1% with an IR of 0.4 excluding thyroid carcinomas), sarcomas (8%, IR: 9 per 100,000), central nervous system tumours and rare epithelial tumours of the thoracic cavity (5%with an IR equal to 6 and 5 per 100,000, respectively). The remaining (rare male genital tumours, IR: 4 per 100,000; tumours of eye, IR: 0.7 per 100,000; neuroendocrine tumours, IR: 4 per 100,000; embryonal tumours, IR: 0.4 per 100,000; rare skin tumours and malignant melanoma of mucosae, IR: 0.8 per 100,000) each constituted &lt;4% of all solid rare cancers. Patients with rare cancers were on average younger than those with common cancers. Essentially, all childhood cancers were rare, while after age 40 years, the common cancers (breast, prostate, colon, rectum, and lung) became increasingly more frequent. For 254,821 rare cancers diagnosed in 2000-2008, 5-year RS was on average 55%, lower than the corresponding figures for patients with common cancers (68%). RS was lower for rare cancers than for common cancers at 1 year and continued to diverge up to 3 years, while the gap remained constant from 3 to 5 years after diagnosis. For rare and common cancers, survival decreased with increasing age. Five-year RS was similar and high for both rare and common cancers up to 54 years; it decreased with age, especially after 54 years, with the elderly (75+ years) having a 37% and 20% lower survival than those aged 55-64 years for rare and common cancers, respectively. We estimated that about 900,000 people were alive in Italy with a previous diagnosis of a rare cancer in 2010 (prevalence). The highest prevalence was observed for rare haematological diseases (278 per 100,000) and rare tumours of the female genital system (265 per 100,000). Very low prevalence (&lt;10 prt 100,000) was observed for rare epithelial skin cancers, for rare epithelial tumours of the digestive system and rare epithelial tumours of the thoracic cavity. COMMENTS: One in four cancers cases diagnosed in Italy is a rare cancer, in agreement with estimates of 24% calculated in Europe overall. In Italy, the group of all rare cancers combined, include 5 cancer types with an IR&gt;6 per 100,000 in Italy, in particular thyroid cancer (IR: 14 per 100,000).The exclusion of thyroid carcinoma from rare cancers reduces the proportion of them in Italy in 2010 to 22%. Differences in incidence across population can be due to the different distribution of risk factors (whether environmental, lifestyle, occupational, or genetic), heterogeneous diagnostic intensity activity, as well as different diagnostic capacity; moreover heterogeneity in accuracy of registration may determine some minor differences in the account of rare cancers. Rare cancers had worse prognosis than common cancers at 1, 3, and 5 years from diagnosis. Differences between rare and common cancers were small 1 year after diagnosis, but survival for rare cancers declined more markedly thereafter, consistent with the idea that treatments for rare cancers are less effective than those for common cancers. However, differences in stage at diagnosis could not be excluded, as 1- and 3-year RS for rare cancers was lower than the corresponding figures for common cancers. Moreover, rare cancers include many cancer entities with a bad prognosis (5-year RS &lt;50%): cancer of head and neck, oesophagus, small intestine, ovary, brain, biliary tract, liver, pleura, multiple myeloma, acute myeloid and lymphatic leukaemia; in contrast, most common cancer cases are breast, prostate, and colorectal cancers, which have a good prognosis. The high prevalence observed for rare haematological diseases and rare tumours of the female genital system is due to their high incidence (the majority of haematological diseases are rare and gynaecological cancers added up to fairly high incidence rates) and relatively good prognosis. The low prevalence of rare epithelial tumours of the digestive system was due to the low survival rates of the majority of tumours included in this group (oesophagus, stomach, small intestine, pancreas, and liver), regardless of the high incidence rate of rare epithelial cancers of these sites. This AIRTUM study confirms that rare cancers are a major public health problem in Italy and provides quantitative estimations, for the first time in Italy, to a problem long known to exist. This monograph provides detailed epidemiologic indicators for almost 200 rare cancers, the majority of which (72%) are very rare (IR&lt;0.5 per 100,000). These data are of major interest for different stakeholders. Health care planners can find useful information herein to properly plan and think of how to reorganise health care services. Researchers now have numbers to design clinical trials considering alternative study designs and statistical approaches. Population-based cancer registries with good quality data are the best source of information to describe the rare cancer burden in a population
    corecore