147 research outputs found

    M-153 Bedrock geology of the Stillwater quadrangle, Washington County, Minnesota

    No full text
    Scale 1:24,000

    ïżœber die chemische Untersuchung von Eriodictyon glutinosum

    No full text

    Utveckling av en enkel mekaniksimulator i 3 dimensioner

    No full text
    This paper concerns the development of a simple simulator of mechanical systems, a basic program to model a body acted on by an outside force and extrapolate what is going to happen in the next moment. It should also be able to present the results graphically, in this case with 3D-graphics, as well as be reasonably faithful to what would actually happen. To achieve this, the programming language Java, with a heavy reliance on the code package Java 3D, was used. Java was chosen for the fact that it is well documented, and Java 3D because it provided useful tools that would be difficult to re-create from the ground up. In the model the simulator uses, solid bodies are treated as particles with a mass, position and velocity, while forces act as a point force on the body’s center of mass. The bodies are graphically represented by spheres. Each body also contains an algorithm to update its position from its current velocity and the forces acting upon it in the current time-step. This is accomplished through Euler’s Method, via Newton’s law connecting mass to acceleration. The simulator has purposefully been written in the simplest possible form, but has left room for adding more features in the future. Three example simulations have been included in the code in order to demonstrate the simulator. These are explained in this paper.Denna rapport syftar till att dokumentera utvecklingen av en mycket enkel mekaniksimulator, ett program som ska kunna modellera en kropp som utsĂ€tts för en kraft och extrapolera sig fram till vad som hĂ€nder i nĂ€sta ögonblick. Den bör Ă€ven kunna redovisa resultatet av denna modell grafiskt, i detta fall med 3D-grafik, samt stĂ€mma nĂ„gorlunda vĂ€l överens med verkligheten. För att uppnĂ„ detta anvĂ€nds programmeringssprĂ„ket Java, och i synnerhet kodpaketet Java 3D. SprĂ„ket valdes för att det Ă€r sĂ„ pass vĂ€ldokumenterat, och Java 3D för att det gav ett antal anvĂ€ndbara verktyg som vore svĂ„ra att skriva pĂ„ egen hand, I den modell som programmet stĂ€ller upp betraktas stela kroppar som partiklar med massa, position och hastighet, medan krafter fungerar som punktkrafter verkande pĂ„ kroppens masscentrum. Grafiskt representeras de stela kropparna av sfĂ€rer. Varje kropp har Ă€ven en algoritm för att uppdatera sin position och hastighet utifrĂ„n de krafter som verkar pĂ„ den vid det aktuella tidssteget. Detta görs via Eulers metod, via Newtons grundlĂ€ggande samband mellan kraft och acceleration. Simulatorn har avsiktligen skrivits i enklast möjliga form, och lĂ€mnar utrymme för att skriva till fler funktioner vid ett senare tillfĂ€lle. Tre exempel har inkluderats i koden för att demonstrera simulatorns funktionalitet. Dessa förklaras nĂ€rmare i rapporten

    ïżœber die Bildung von Aminperoxyden bei Brucin und Strychnin

    No full text

    Building support for carbon emissions mitigation: can we use an ocean acidification frame to promote support?

    No full text
    Thesis (Master's)--University of Washington, 2016-06University of Washington Abstract Building support for carbon emissions mitigation: can we use an ocean acidification frame to promote support? Max Mossler Chair of the supervisory committee: Professor Ryan Kelly School of Marine and Environmental Affairs Increasing public support for carbon emissions mitigation is crucial for solving global issues like climate change and ocean acidification (OA). Yet carbon emissions mitigation policies are typically discussed in the context of climate change and hardly ever in the context of OA. In this paper, we present carbon emissions in five different contexts (climate change, global warming, carbon pollution, air pollution, and ocean acidification) and use an online survey tool—with a politically diverse sample of the US population—to measure support for mitigation policies. Though air pollution mitigation receives the highest amount of policy support overall, OA mitigation receives higher levels of support than carbon pollution, climate change, and global warming from conservatives who have heard of ocean acidification. This finding, coupled with other trends in OA perceptions has interesting potential for future risk communication and carbon emissions mitigation policies; OA may offer a new way to engage conservatives in carbon mitigation policy
    • 

    corecore