561 research outputs found

    Entanglement, decoherence and thermal relaxation in exactly solvable models

    Full text link
    Exactly solvable models provide an opportunity to study different aspects of reduced quantum dynamics in detail. We consider the reduced dynamics of a single spin in finite XX and XY spin 1/2 chains. First we introduce a general expression describing the evolution of the reduced density matrix. This expression proves to be tractable when the combined closed system (i.e. open system plus environment) is integrable. Then we focus on comparing decoherence and thermalization timescales in the XX chain. We find that for a single spin these timescales are comparable, in contrast to what should be expected for a macroscopic body. This indicates that the process of quantum relaxation of a system with few accessible states can not be separated in two distinct stages - decoherence and thermalization. Finally, we turn to finite-size effects in the time evolution of a single spin in the XY chain. We observe three consecutive stages of the evolution: regular evolution, partial revivals, irregular (apparently chaotic) evolution. The duration of the regular stage is proportional to the number of spins in the chain. We observe a "quiet and cold period" in the end of the regular stage, which breaks up abruptly at some threshold time.Comment: talk at the Fifth International Workshop DICE-2010, Castiglioncello (Italy), September 13-1

    Quickest Online Selection of an Increasing Subsequence of Specified Size

    Get PDF
    Given a sequence of independent random variables with a common continuous distribution, we consider the online decision problem where one seeks to minimize the expected value of the time that is needed to complete the selection of a monotone increasing subsequence of a prespecified length nn. This problem is dual to some online decision problems that have been considered earlier, and this dual problem has some notable advantages. In particular, the recursions and equations of optimality lead with relative ease to asymptotic formulas for mean and variance of the minimal selection time.Comment: 17 page

    Reconstruction of Random Colourings

    Get PDF
    Reconstruction problems have been studied in a number of contexts including biology, information theory and and statistical physics. We consider the reconstruction problem for random kk-colourings on the Δ\Delta-ary tree for large kk. Bhatnagar et. al. showed non-reconstruction when Δ≀12klog⁥k−o(klog⁥k)\Delta \leq \frac12 k\log k - o(k\log k) and reconstruction when Δ≄klog⁥k+o(klog⁥k)\Delta \geq k\log k + o(k\log k). We tighten this result and show non-reconstruction when Δ≀k[log⁥k+log⁥log⁥k+1−ln⁥2−o(1)]\Delta \leq k[\log k + \log \log k + 1 - \ln 2 -o(1)] and reconstruction when Δ≄k[log⁥k+log⁥log⁥k+1+o(1)]\Delta \geq k[\log k + \log \log k + 1+o(1)].Comment: Added references, updated notatio

    A New Look at Survey Propagation and Its Generalizations

    Get PDF
    This article provides a new conceptual perspective on survey propagation, which is an iterative algorithm recently introduced by the statistical physics community that is very effective in solving random k-SAT problems even with densities close to the satisfiability threshold. We first describe how any SAT formula can be associated with a novel family of Markov random fields (MRFs), parameterized by a real number ρ ∈ [0, 1]. We then show that applying belief propagation---a well-known “message-passing” technique for estimating marginal probabilities---to this family of MRFs recovers a known family of algorithms, ranging from pure survey propagation at one extreme (ρ = 1) to standard belief propagation on the uniform distribution over SAT assignments at the other extreme (ρ = 0). Configurations in these MRFs have a natural interpretation as partial satisfiability assignments, on which a partial order can be defined. We isolate cores as minimal elements in this partial ordering, which are also fixed points of survey propagation and the only assignments with positive probability in the MRF for ρ = 1. Our experimental results for k = 3 suggest that solutions of random formulas typically do not possess non-trivial cores. This makes it necessary to study the structure of the space of partial assignments for ρ \u3c 1 and investigate the role of assignments that are very close to being cores. To that end, we investigate the associated lattice structure, and prove a weight-preserving identity that shows how any MRF with ρ \u3e 0 can be viewed as a “smoothed” version of the uniform distribution over satisfying assignments (ρ = 0). Finally, we isolate properties of Gibbs sampling and message-passing algorithms that are typical for an ensemble of k-SAT problems

    Circular Networks from Distorted Metrics

    Full text link
    Trees have long been used as a graphical representation of species relationships. However complex evolutionary events, such as genetic reassortments or hybrid speciations which occur commonly in viruses, bacteria and plants, do not fit into this elementary framework. Alternatively, various network representations have been developed. Circular networks are a natural generalization of leaf-labeled trees interpreted as split systems, that is, collections of bipartitions over leaf labels corresponding to current species. Although such networks do not explicitly model specific evolutionary events of interest, their straightforward visualization and fast reconstruction have made them a popular exploratory tool to detect network-like evolution in genetic datasets. Standard reconstruction methods for circular networks, such as Neighbor-Net, rely on an associated metric on the species set. Such a metric is first estimated from DNA sequences, which leads to a key difficulty: distantly related sequences produce statistically unreliable estimates. This is problematic for Neighbor-Net as it is based on the popular tree reconstruction method Neighbor-Joining, whose sensitivity to distance estimation errors is well established theoretically. In the tree case, more robust reconstruction methods have been developed using the notion of a distorted metric, which captures the dependence of the error in the distance through a radius of accuracy. Here we design the first circular network reconstruction method based on distorted metrics. Our method is computationally efficient. Moreover, the analysis of its radius of accuracy highlights the important role played by the maximum incompatibility, a measure of the extent to which the network differs from a tree.Comment: Submitte

    Harnessing the Bethe Free Energy

    Get PDF
    Gibbs measures induced by random factor graphs play a prominent role in computer science, combinatorics and physics. A key problem is to calculate the typical value of the partition function. According to the "replica symmetric cavity method", a heuristic that rests on non-rigorous considerations from statistical mechanics, in many cases this problem can be tackled by way of maximising a functional called the "Bethe free energy". In this paper we prove that the Bethe free energy upper-bounds the partition function in a broad class of models. Additionally, we provide a sufficient condition for this upper bound to be tight

    Sorting and Selection in Posets

    Get PDF
    Classical problems of sorting and searching assume an underlying linear ordering of the objects being compared. In this paper, we study these problems in the context of partially ordered sets, in which some pairs of objects are incomparable. This generalization is interesting from a combinatorial perspective, and it has immediate applications in ranking scenarios where there is no underlying linear ordering, e.g., conference submissions. It also has applications in reconstructing certain types of networks, including biological networks. Our results represent significant progress over previous results from two decades ago by Faigle and Turán. In particular, we present the first algorithm that sorts a width-w poset of size n with query complexity O(n(w+\log n)) and prove that this query complexity is asymptotically optimal. We also describe a variant of Mergesort with query complexity O(wn log n/w) and total complexity O(w2n log n/w); an algorithm with the same query complexity was given by Faigle and Turán, but no efficient implementation of that algorithm is known. Both our sorting algorithms can be applied with negligible overhead to the more general problem of reconstructing transitive relations. We also consider two related problems: finding the minimal elements, and its generalization to finding the bottom k “levels,” called the k-selection problem. We give efficient deterministic and randomized algorithms for finding the minimal elements with query complexity and total complexity O(wn). We provide matching lower bounds for the query complexity up to a factor of 2 and generalize the results to the k-selection problem. Finally, we present efficient algorithms for computing a linear extension of a poset and computing the heights of all elements

    Cake Cutting Algorithms for Piecewise Constant and Piecewise Uniform Valuations

    Full text link
    Cake cutting is one of the most fundamental settings in fair division and mechanism design without money. In this paper, we consider different levels of three fundamental goals in cake cutting: fairness, Pareto optimality, and strategyproofness. In particular, we present robust versions of envy-freeness and proportionality that are not only stronger than their standard counter-parts but also have less information requirements. We then focus on cake cutting with piecewise constant valuations and present three desirable algorithms: CCEA (Controlled Cake Eating Algorithm), MEA (Market Equilibrium Algorithm) and CSD (Constrained Serial Dictatorship). CCEA is polynomial-time, robust envy-free, and non-wasteful. It relies on parametric network flows and recent generalizations of the probabilistic serial algorithm. For the subdomain of piecewise uniform valuations, we show that it is also group-strategyproof. Then, we show that there exists an algorithm (MEA) that is polynomial-time, envy-free, proportional, and Pareto optimal. MEA is based on computing a market-based equilibrium via a convex program and relies on the results of Reijnierse and Potters [24] and Devanur et al. [15]. Moreover, we show that MEA and CCEA are equivalent to mechanism 1 of Chen et. al. [12] for piecewise uniform valuations. We then present an algorithm CSD and a way to implement it via randomization that satisfies strategyproofness in expectation, robust proportionality, and unanimity for piecewise constant valuations. For the case of two agents, it is robust envy-free, robust proportional, strategyproof, and polynomial-time. Many of our results extend to more general settings in cake cutting that allow for variable claims and initial endowments. We also show a few impossibility results to complement our algorithms.Comment: 39 page
    • 

    corecore