
University of Pennsylvania
ScholarlyCommons

Statistics Papers Wharton Faculty Research

2011

Sorting and Selection in Posets
Constantinos Daskalakis

Richard M. Karp

Elchanan Mossel
University of Pennsylvania

Samantha J. Riesenfeld

Elad Verbin

Follow this and additional works at: http://repository.upenn.edu/statistics_papers

Part of the Computer Sciences Commons, and the Statistics and Probability Commons

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/statistics_papers/410
For more information, please contact repository@pobox.upenn.edu.

Recommended Citation
Daskalakis, C., Karp, R. M., Mossel, E., Riesenfeld, S. J., & Verbin, E. (2011). Sorting and Selection in Posets. SIAM Journal on
Computing, 40 (3), 597-622. http://dx.doi.org/10.1137/070697720

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/132271822?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fstatistics_papers%2F410&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/statistics_papers?utm_source=repository.upenn.edu%2Fstatistics_papers%2F410&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/wharton_faculty?utm_source=repository.upenn.edu%2Fstatistics_papers%2F410&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/statistics_papers?utm_source=repository.upenn.edu%2Fstatistics_papers%2F410&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=repository.upenn.edu%2Fstatistics_papers%2F410&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/208?utm_source=repository.upenn.edu%2Fstatistics_papers%2F410&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1137/070697720
http://repository.upenn.edu/statistics_papers/410
mailto:repository@pobox.upenn.edu

Sorting and Selection in Posets

Abstract
Classical problems of sorting and searching assume an underlying linear ordering of the objects being
compared. In this paper, we study these problems in the context of partially ordered sets, in which some pairs
of objects are incomparable. This generalization is interesting from a combinatorial perspective, and it has
immediate applications in ranking scenarios where there is no underlying linear ordering, e.g., conference
submissions. It also has applications in reconstructing certain types of networks, including biological
networks. Our results represent significant progress over previous results from two decades ago by Faigle and
Turán. In particular, we present the first algorithm that sorts a width-w poset of size n with query complexity
O(n(w+\log n)) and prove that this query complexity is asymptotically optimal. We also describe a variant of
Mergesort with query complexity O(wn log n/w) and total complexity O(w2n log n/w); an algorithm with
the same query complexity was given by Faigle and Turán, but no efficient implementation of that algorithm is
known. Both our sorting algorithms can be applied with negligible overhead to the more general problem of
reconstructing transitive relations. We also consider two related problems: finding the minimal elements, and
its generalization to finding the bottom k “levels,” called the k-selection problem. We give efficient
deterministic and randomized algorithms for finding the minimal elements with query complexity and total
complexity O(wn). We provide matching lower bounds for the query complexity up to a factor of 2 and
generalize the results to the k-selection problem. Finally, we present efficient algorithms for computing a linear
extension of a poset and computing the heights of all elements.

Keywords
chain decomposition, partially ordered sets, query complexity, selection, sorting, transitive relations

Disciplines
Computer Sciences | Statistics and Probability

This journal article is available at ScholarlyCommons: http://repository.upenn.edu/statistics_papers/410

http://repository.upenn.edu/statistics_papers/410?utm_source=repository.upenn.edu%2Fstatistics_papers%2F410&utm_medium=PDF&utm_campaign=PDFCoverPages

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. COMPUT. c© 2011 Society for Industrial and Applied Mathematics
Vol. 40, No. 3, pp. 597–622

SORTING AND SELECTION IN POSETS∗

CONSTANTINOS DASKALAKIS† , RICHARD M. KARP‡ , ELCHANAN MOSSEL§ ,
SAMANTHA J. RIESENFELD¶, AND ELAD VERBIN‖

Abstract. Classical problems of sorting and searching assume an underlying linear ordering
of the objects being compared. In this paper, we study these problems in the context of partially
ordered sets, in which some pairs of objects are incomparable. This generalization is interesting from
a combinatorial perspective, and it has immediate applications in ranking scenarios where there is
no underlying linear ordering, e.g., conference submissions. It also has applications in reconstructing
certain types of networks, including biological networks. Our results represent significant progress
over previous results from two decades ago by Faigle and Turán. In particular, we present the first
algorithm that sorts a width-w poset of size n with query complexity O(n(w + logn)) and prove
that this query complexity is asymptotically optimal. We also describe a variant of Mergesort with
query complexity O(wn log n

w
) and total complexity O(w2n log n

w
); an algorithm with the same query

complexity was given by Faigle and Turán, but no efficient implementation of that algorithm is known.
Both our sorting algorithms can be applied with negligible overhead to the more general problem
of reconstructing transitive relations. We also consider two related problems: finding the minimal
elements, and its generalization to finding the bottom k “levels,” called the k-selection problem. We
give efficient deterministic and randomized algorithms for finding the minimal elements with query
complexity and total complexity O(wn). We provide matching lower bounds for the query complexity
up to a factor of 2 and generalize the results to the k-selection problem. Finally, we present efficient
algorithms for computing a linear extension of a poset and computing the heights of all elements.

Key words. chain decomposition, partially ordered sets, query complexity, selection, sorting,
transitive relations

AMS subject classifications. 68, 05

DOI. 10.1137/070697720

1. Introduction. Sorting is a fundamental and, by now, well-understood prob-
lem in combinatorics and computer science. Classically, the problem is to determine
the structure of a totally ordered set, and comparison algorithms, in which direct

∗Received by the editors July 19, 2007; accepted for publication (in revised form) January 3,
2011; published electronically May 4, 2011. A previous, limited version of this article appeared in
Proceedings of the Twentieth ACM-SIAM Symposium on Discrete Algorithms, 2009, pp. 392–401.

http://www.siam.org/journals/sicomp/40-3/69772.html
†EECS and CSAIL, MIT, Cambridge, MA 02139 (costis@csail.mit.edu). This research was done

while this author was a student at UC Berkeley, supported by a Microsoft Research Fellowship and
NSF grant CCF-0635319.

‡Department of Computer Science, UC Berkeley, Berkeley, CA 94720, and International Computer
Science Institute, Berkeley, CA 74704 (karp@icsi.berkeley.edu). This author’s work was supported
by NSF grant CCF-0515259.

§Department of Statistics and Computer Science, UC Berkeley, Berkeley, CA 94720, and Depart-
ment of Mathematics and Computer Science, Weizmann Institute of Science, Rehovot 76100, Israel
(mossel@stat.berkeley.edu). This author’s work was supported by DOD grant N0014-07-1-05-06,
NSF grants DMS 0528488 and DMS 0548249, and a Sloan Fellowship in Mathematics.

¶The J. David Gladstone Institutes, University of California, San Francisco, CA 94158 (samantha.
riesenfeld@gladstone.ucsf.edu). This author’s work was supported in part by a grant from the Gordon
& Betty Moore Foundation to Katherine S. Pollard. Part of this research was done while this author
was a student at UC Berkeley, supported by NSF grant CCF-0515259.

‖Institute for Theoretical Computer Science, Tsinghua University, Beijing 10084, China
(eladv@tsinghua.edu.cn). Part of this research was done while this author was a student at Tel
Aviv University. This author’s work was supported by National Natural Science Foundation of
China grant 60553001 and National Basic Research Program of China grants 2007CB807900 and
2007CB807901.

597

D
ow

nl
oa

de
d

07
/2

7/
16

 to
 1

30
.9

1.
11

8.
71

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

598 DASKALAKIS, KARP, MOSSEL, RIESENFELD, AND VERBIN

comparisons between pairs of elements are the only means of acquiring information
about the linear order, form an important subclass. Usually, sorting algorithms are
evaluated by two complexity measures: query complexity, the number of comparisons
performed, and total complexity, the number of basic computational operations of all
types performed.

The generalization of the sorting problem to partially ordered sets, or posets, has
been considered in the literature (see, e.g., Faigle and Turán [9] and our discussion of
related work in section 1.2). However, sorting problems appear to be more intricate
for partial orders, which may explain why there has not been an account of a query-
optimal (possibly inefficient) sorting algorithm.

In this paper we make significant progress on the problem of sorting posets and
related problems. In particular, we provide the first asymptotically query-optimal
algorithm for sorting and give an efficient algorithm which matches the query com-
plexity of the algorithm by Faigle and Turán (no efficient implementation of which is
known). Moreover, we provide upper and lower bounds for the problem of finding the
minimal elements of a poset and its generalization to selecting the bottom k-layers,
which asymptotically match for k = 1. Our algorithms gather information about the
poset by querying an oracle; the oracle responds to a query on a pair of elements by
giving their relation or a statement of their incomparability.

Apart from having an interesting combinatorial structure, the generalization of
sorting to posets is useful for treating ranking scenarios where certain pairs of ele-
ments are incomparable. Examples include ranking conference submissions, strains of
bacteria according to their evolutionary fitness, and points in Rd under the coordinate-
wise dominance relation. Note that a query may involve extensive effort (for example,
running an experiment to determine the relative evolutionary fitness of two strains of
bacteria). Hence, query complexity may be just as important as total complexity.

A partial order on a set can be thought of as the reachability relation of a directed
acyclic graph (DAG). More generally, a transitive relation (which is not necessarily
irreflexive) can be thought of as the reachability relation of a general directed graph.
In applications, the relation represents the direct and indirect influences among a set
of variables, processes, or components of a system, such as the input-output relations
among a set of metabolic reactions or the causal influences among a set of interacting
proteins. We show that, with negligible overhead, the problem of sorting a transi-
tive relation reduces to the problem of sorting a partial order. Our algorithms thus
allow one to reconstruct general directed graphs, given an oracle for queries on reach-
ability from one node to another. As directed graphs are the basic model for many
real-life networks including social, information, biological, and technological networks
(see, e.g., [17]), our algorithms provide a potential tool for the reconstruction of such
networks.

Partial orders often arise in the classical sorting literature as a representation of
the “information state” at a general step of a sorting algorithm. In such cases the
incomparability of two elements simply means that their true relation has not been
determined yet. The present work is quite different in that the underlying structure
to be discovered is a partial order, and incomparability of elements is inherent, rather
than representing temporary lack of information. Nevertheless, the body of work on
comparison algorithms for total orders provides insights for the present context (see,
e.g., [2, 5, 11, 13, 15, 16]).

1.1. Definitions. To precisely describe the problems considered in this paper
and our results, we require some formal definitions. A partially ordered set, or poset,

D
ow

nl
oa

de
d

07
/2

7/
16

 to
 1

30
.9

1.
11

8.
71

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SORTING AND SELECTION IN POSETS 599

is a pair P = (P,�), where P is a set of elements and � ⊂ P × P is an irreflexive,
transitive binary relation. For elements a, b ∈ P , if (a, b) ∈ �, we write a � b and say
that a dominates b, or that b is smaller than a. If a �� b and b �� a, we say that a and
b are incomparable and write a �∼ b.

A chain C ⊆ P is a subset of mutually comparable elements, that is, a subset
such that for any elements ci, cj ∈ C, i �= j, either ci � cj or cj � ci. An ideal I ⊆ P
is a subset of elements such that if x ∈ I and x � y, then y ∈ I. The height of an
element a is the maximum cardinality of a chain whose elements are all dominated
by a. We call the set {a : ∀ b, b � a or b �∼ a} of elements of height 0 the minimal
elements. An antichain A ⊆ P is a subset of mutually incomparable elements. The
width w(P) of poset P is defined to be the maximum cardinality of an antichain of P .

A decomposition C of P into chains is a family C = {C1, C2, . . . , Cq} of disjoint
chains such that their union is P . The size of a decomposition is the number of chains
in it. The width w(P) is clearly a lower bound on the size of any decomposition
of P . We make frequent use of Dilworth’s theorem, which states that there is a
decomposition of P of size w(P). A decomposition of size w(P) is called a minimum
chain decomposition.

1.2. Sorting and k-selection. The central computational problems of this pa-
per are sorting and k-selection. The sorting problem is to completely determine the
partial order on a set of n elements, and the k-selection problem is to determine the
set of elements of height at most k− 1, i.e., the set of elements in the k bottom levels
of the partial order. In both problems we are given an upper bound w on the width
of the partial order. (But see also section 6 for a relaxation of this assumption.) In
the absence of a bound on the width, the query complexity of the sorting problem
is exactly

(
n
2

)
, in view of the worst-case example in which all pairs of elements are

incomparable. In the classical sorting and selection problems, w = 1.

Faigle and Turán [9] described two algorithms for sorting posets, which they term
“identification” of a poset, both of which have query complexity O

(
wn log n

w

)
. (In

fact the second algorithm has query complexity O(n logNP), where NP is the number
of ideals of the input poset P ; it is easy to see that NP = O(nw) if P has width w, and
thatNP = (n/w)w if P consists of w incomparable chains, each of size n/w.) The total
complexity of sorting has not been considered. It turns out that the total complexity
of the first algorithm of Faigle and Turán depends on the subroutine for computing
a chain decomposition, the complexity of which was not analyzed in their work [9].
Furthermore, it is not clear whether there exists a polynomial-time implementation
of the second algorithm.

Boldi, Chierichetti, and Vigna [1] have independently considered the query com-
plexity of a problem related to k-selection: Given a poset and an integer t, find t
elements such that the maximum height of the elements in the set is minimized.
Their results are not directly comparable to ours, since translating from one setting
to the other would require knowledge of the number of elements in each layer of the
poset. A recent paper [18] considers an extension of the searching and sorting problem
to posets that are either trees or forests.

1.3. Techniques. It is natural to approach the problems of sorting and k-
selection in posets by considering generalizations of well-known algorithms for the
case of total orders, whose running times are closely matched by proven lower bounds.
However, natural generalizations of classic algorithms do not provide optimal poset
algorithms in terms of the total complexity and query complexity.

D
ow

nl
oa

de
d

07
/2

7/
16

 to
 1

30
.9

1.
11

8.
71

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

600 DASKALAKIS, KARP, MOSSEL, RIESENFELD, AND VERBIN

In the case of sorting, the generalization of Mergesort considered here loses a factor
of w in its query complexity compared to the lower bound established in Theorem 3.2.
Surprisingly, we can match the query complexity lower bound (up to a constant factor)
by carefully exploiting the structure of the poset. We do not know whether it is
possible to achieve optimal query complexity efficiently, although it is conceivable that
approximate-counting techniques similar to those used in Dyer, Frieze, and Kannan
[8] could be used to make our query-optimal EntropySort algorithm (described in
section 3.1) efficient.

The seemingly easier problem of k-selection still poses interesting challenges, par-
ticularly in the proofs of our lower bounds (see, for example, the proofs of Theorems 4.6
and 4.7).

1.4. Main results and paper outline. In section 2, we briefly discuss an ef-
ficient representation of a poset. The representation has size O(wn) and permits
retrieval of the relation between any two elements in time O(1). In sections 3.1
and 3.2, we give an algorithm for sorting a poset with query complexity O(n(logn+w))
and show that this query complexity is asymptotically optimal. We also provide a
generalization of Mergesort with query complexity O(wn log n) and total complexity
O(w2n logn). In section 4, we give upper and lower bounds on the query complexity
and total complexity of k-selection within deterministic and randomized models of
computation. For the special case of finding the minimal elements (k = 1), we show
that the query complexity and total complexity are Θ(wn); the query upper bounds
match the query lower bounds up to a factor of 2. In section 5, we give a random-
ized algorithm, based on a generalization of Quicksort, of expected total complexity
O(n(log n+w)) for computing a linear extension of a poset. We also give a random-
ized algorithm of expected total complexity O(wn log n) for computing the heights
of all elements in a poset. Finally, in section 6, we show that the results on sorting
posets generalize to the case where an upper bound on the width is not known and
to the case of transitive relations.

2. Representing a poset: The CHAINMERGE data structure. Once the
relation between every pair of elements in a poset has been determined, some represen-
tation of this information is required, both for output and for use in our algorithms.
The simple ChainMerge data structure that we describe here supports constant-
time look-ups of the relation between any pair of elements. It is built from a chain
decomposition.

Let C = {C1, . . . , Cq} be a chain decomposition of a poset P = (P,�). Then
ChainMerge(P , C) stores, for each element x ∈ P , q indices as follows: Let Ci be
the chain of C containing x. The data structure stores the index of x in Ci and, for
all j, 1 ≤ j ≤ q, j �= i, the index of the largest element of chain Cj that is dominated
by x. The performance of the data structure is characterized by the following lemma.

Claim 2.1. Given a query oracle for a poset P = (P,�) and a decomposition C
of P into q chains, building the ChainMerge data structure has query complexity
at most 2qn and total complexity O(qn), where n = |P |. Given ChainMerge(P , C),
the relation in P of any pair of elements can be found in constant time.

Proof. The indices corresponding to chain Cj that must be stored for the elements
in chain Ci can be found in O(|Ci|+ |Cj |) time, using |Ci|+ |Cj | queries, by simultane-
ously scanningCi and Cj . The scan begins with the smallest elements of Ci and Cj and
moves upward. At each step, it queries whether the current element of Cj dominates
the current element of Ci. If so, it stores the index of the element in Cj and considers
the next element in Ci; if not, it considers the next element in Cj . Since each chain

D
ow

nl
oa

de
d

07
/2

7/
16

 to
 1

30
.9

1.
11

8.
71

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SORTING AND SELECTION IN POSETS 601

is scanned 2q − 1 times, it follows that the query complexity of ChainMerge(P , C)
is at most 2qn, and the total complexity is O(q ·∑q

i=1 |Ci|) = O(qn).
Let x, y ∈ P , with x ∈ Ci and y ∈ Cj . The look-up operation works as follows:

If i = j, we simply do a comparison on the indices of x and y in Ci, as in the case of
a total order. If i �= j, then we look up the index of the largest element of Cj that is
dominated by x; this index is greater than (or equal to) the index of y in Cj if and
only if x � y. If x �� y, then we look up the index of the largest element of Ci that is
dominated y; this index is greater than (or equal to) the index of x in Ci if and only
if y � x. If neither x � y nor y � x, then x �∼ y.

3. The sorting problem. We address the problem of sorting a poset, which is
the computational task of producing a representation of a poset P = (P,�), given the
set P of n elements, an upper bound w on the width of P , and access to an oracle for
P . (See section 6.1 for the case where an upper bound on the width is not known.)
The following theorem of Brightwell and Goodall [3] provides a lower bound on the
number Nw(n) of posets of width at most w on n elements.

Theorem 3.1 (Brightwell and Goodall [3]). The number Nw(n) of partially
ordered sets of n elements and width at most w satisfies

n!

w!
4n(w−1) n−24w(w−1) ≤ Nw(n) ≤ n! 4n(w−1) n−(w−2)(w−1)/2ww(w−1)/2.

Using Theorem 3.1 and our lower bound for finding the minimal elements of a
poset, provided in Theorem 4.6, we establish a lower bound on the number of queries
required to sort a poset.

Theorem 3.2. Any algorithm which sorts a poset of width at most w on n
elements requires Ω(n(log n+ w)) queries.

Proof. From Theorem 3.1, if w = o(n
logn), then logNw(n) = Θ(n logn + wn);

hence Ω(n(logn+w)) queries are required information theoretically for sorting. The-
orem 4.6 gives a lower bound of Ω(wn) queries for finding the minimal elements
of a poset. Since sorting is at least as hard as finding the minimal elements, it
follows that Ω(wn) queries are necessary for sorting. For the case w = Ω(n

log n),

wn = Ω(n logn+ wn).

3.1. A query-optimal sorting algorithm. We describe a sorting algorithm
that has optimal query complexity; i.e., it sorts a poset of width at most w on n ele-
ments using Θ(n logn+wn) oracle queries. Our algorithm is not necessarily efficient,
so in section 3.2 we consider efficient solutions to the problem.

Before presenting our algorithm, it is worth discussing an intuitive approach that
is different from the one we take. For any set of oracle queries and responses, there is
a corresponding set of posets, which we call candidates, that are the posets consistent
with the responses to these queries. A natural sorting algorithm is to find a sequence
of oracle queries such that, for each query (or for a positive fraction of the queries),
the possible responses to the query partition the space of posets that are candidates
(after the previous responses) into three parts, at least two of which are relatively
large. Such an algorithm would achieve the information-theoretic lower bound (up to
a constant factor).

For example, the effectiveness of Quicksort for sorting total orders relies on the
fact that most of the queries made by the algorithm partition the space of candidate
total orders into two parts, each of relative size of at least 1/4. Indeed, in the case
of total orders, much more is known: for any subset of possible queries to the oracle,

D
ow

nl
oa

de
d

07
/2

7/
16

 to
 1

30
.9

1.
11

8.
71

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

602 DASKALAKIS, KARP, MOSSEL, RIESENFELD, AND VERBIN

Algorithm Poset–BinInsertionSort(P)
input: a set P , an oracle for a poset P = (P,�), an upper bound w on width of P
output: a ChainMerge data structure for P
1. P ′ := ({e}, {}), where e ∈ P is an arbitrary element; /* P ′ is the current poset*/
2. P ′ := {e}; R′ := {};
3. U := P \ {e}; /* U is the set of elements that have not been inserted */
4. while U �= ∅

a. pick an arbitrary element e ∈ U ; /* e is the element to be inserted into P ′*/
b. U := U \ {e};
c. find a chain decomposition C = {C1, C2, . . . , Cq} of P ′, with q ≤ w chains;
d. for i = 1, . . . , q

i. let Ci = {ei1, . . . , ei�i}, where ei�i � · · · � ei2 � ei1;
ii. do binary search on Ci to find the smallest element (if any) dominating e;
iii. do binary search on Ci to find the largest element (if any) dominated by e;

e. based on the results of the binary searches, infer all relations of e with the
elements of P ′;

f. add into R′ all the relations of e with the elements of P ′; P ′ := P ′ ∪ {e};
g. P ′ = (P ′,R′);

5. find a chain decomposition C of P ′; build ChainMerge(P ′, C) (no additional
queries);

6. return ChainMerge(P ′, C);
Fig. 3.1. Pseudocode for Poset–BinInsertionSort.

there always exists a query that partitions the space of candidate total orders into
two parts, each of relative size of at least 3/11 [14]; see also [5].

In the case of width-w posets, however, it could be the case that most queries
partition the space into three parts, one of which is much larger than the other two.
For example, if the set consists of w incomparable chains, each of size n/w, then a
random query has a response of incomparability with probability about 1− 1/w. (On
an intuitive level, this explains the extra factor of w in the query complexity of our
version of Mergesort, given in section 3.2.) Hence, we resort to more elaborate sorting
strategies.

Our optimal algorithm builds upon a straightforward algorithm, called Poset–

BinInsertionSort, which is identical to “Algorithm A” of Faigle and Turán [9].
The algorithm is inspired by the binary insertion-sort algorithm for total orders.
Pseudocode for Poset–BinInsertionSort is presented in Figure 3.1.

The natural idea behind Poset–BinInsertionSort is to sequentially insert el-
ements into a subset of the poset, while maintaining a chain decomposition of the
latter into a number of chains that is at most the upper bound w on the width of the
poset to be constructed. A straightforward implementation of this idea is to perform
a binary search on every chain of the decomposition in order to figure out the relation-
ship of the element being inserted with every element of that chain and, ultimately,
with all the elements of the current poset. It turns out that this simple algorithm is
not optimal; it is off by a factor of w from the optimum. In the rest of this section,
we show how to adapt Poset–BinInsertionSort to achieve the lower bound given
in Theorem 3.2. First, we show the following lemma.

Lemma 3.3 (Faigle and Turán [9]). Poset–BinInsertionSort sorts any partial
order P of width at most w on n elements with O(wn log n) oracle queries.

Proof. The correctness of Poset–BinInsertionSort should be clear from its
description. (The simple argument showing that step 4e can be executed based on

D
ow

nl
oa

de
d

07
/2

7/
16

 to
 1

30
.9

1.
11

8.
71

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SORTING AND SELECTION IN POSETS 603

the information obtained in step 4d is similar to the proof for the ChainMerge

data structure in section 2.) It is not hard to see that the number of oracle queries
incurred by Poset–BinInsertionSort for inserting each element is O(w logn) and,
therefore, the total number of queries is O(wn log n).

It follows that, as n scales, the number of queries incurred by the algorithm
is larger than the lower bound by a factor of w. The Achilles’ heel of the Poset-

BinInsertionSort algorithm is in the method of insertion of an element—specifically,
in the way the binary searches are performed (see step 4d of Figure 3.1). In these se-
quences of queries, no structural properties of P ′ are used for deciding which queries
to the oracle are more useful than others; in some sense, the binary searches give
the same “attention” to queries whose answer is guaranteed to greatly decrease the
number of remaining possibilities and those whose answer could potentially not be
very informative. On the other hand, as we discussed earlier, a sorting algorithm that
always makes the most informative query is not guaranteed to be optimal either.

Our algorithm tries to resolve this dilemma. We suggest a scheme that has the
same structure as the Poset–BinInsertionSort algorithm but exploits the struc-
ture of the already constructed poset P ′ in order to amortize the cost of the queries
over the insertions. The amortized query cost matches the lower bound of Theo-
rem 3.2.

The new algorithm, named EntropySort, modifies the binary searches of step
4d into weighted binary searches. The weights assigned to the elements satisfy the
following property: the number of queries it takes to insert an element into a chain is
proportional to the (logarithm of the) number of candidate posets that will be elim-
inated after the insertion of the element. In other words, we use fewer queries for
insertions that are not informative and more queries for insertions that are informa-
tive. In some sense, this corresponds to an entropy-weighted binary search. To define
this notion precisely, we use the following definition.

Definition 3.4. Suppose that P ′ = (P ′,R′) is a poset of width at most w, U is
a set of elements such that U ∩P ′ = ∅, u ∈ U , and ER,PR ⊆ ({u}×P ′)∪ (P ′×{u}).
We say that P = (P ′ ∪ U,R) is a width-w extension of P ′ on U conditioned on
(ER,PR) if P is a poset of width at most w, R ∩ (P ′ × P ′) = R′, and, moreover,
ER ⊆ R, R ∩ PR = ∅. In other words, P is an extension of P ′ on the elements of
U , which is consistent with P ′, and it contains the relations of u to P ′ given by ER
and does not contain the relations of u to P ′ given by PR. The set ER is called the
set of enforced relations and PR the set of prohibited relations.

We give in Figure 3.2 the pseudocode of step 4d′ of EntropySort, which replaces
step 4d of Poset–BinInsertionSort. The correctness of EntropySort follows
trivially from the correctness of Poset–BinInsertionSort. We prove next that its
query complexity is optimal. Recall that Nw(n) denotes the number of partial orders
of width at most w on n elements.

Theorem 3.5. EntropySort sorts any partial order P of width at most w
on n elements using at most 2 logNw(n) + 4wn = Θ(n logn+ wn) oracle queries. In
particular, the query complexity of the algorithm is at most 2n logn+8wn+2w logw.

Proof. We characterize the number of oracle calls required by the weighted binary
searches.

Lemma 3.6 (weighted binary search). For every j ∈ {1, 2, . . . , �i + 1}, if eij is
the smallest element of chain Ci which dominates element e (j = �i + 1 corresponds
to the case where no element of chain Ci dominates e), then j is found after at most
2 · (1 + log Di

Dij
) oracle queries in step v of the algorithm EntropySort.

D
ow

nl
oa

de
d

07
/2

7/
16

 to
 1

30
.9

1.
11

8.
71

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

604 DASKALAKIS, KARP, MOSSEL, RIESENFELD, AND VERBIN

Step 4d′ for Algorithm EntropySort(P)
4d′. ER = ∅; PR = ∅;

for i = 1, . . . , q
i. let Ci = {ei1, . . . , ei�i}, where ei�i � · · · � ei2 � ei1;
ii. for j = 1, . . . , �i + 1

• set ERj = {(eik, e)|j ≤ k ≤ �i}; set PRj = {(eik, e)|1 ≤ k < j};
• compute Dij , the number of width-w extensions of P ′ on U ,

conditioned on (ER ∪ ERj ,PR ∪ PRj);
/* Dij represents the number of posets on P consistent with P ′, (ER, PR),

in which eij is the smallest element of chain Ci that dominates e;
j = �i + 1 corresponds to the case that no element of Ci dominates e;*/

endfor

iii. set Di =
∑�i+1

j=1 Dij ;

/* Di is equal to the total number of width-w extensions of P ′ on U conditioned on
(ER,PR)*/

iv. partition the unit interval [0, 1) into �i + 1 intervals ([bj , tj))
�i+1
j=1 ,

where b1 = 0, bj = tj−1 for all j ≥ 2,
and tj = (

∑
j′≤j Dij′)/Di for all j ≥ 1.

/* each interval corresponds to an element of Ci or the “dummy” element ei�i+1 */
v. do binary search on [0, 1) to find smallest element (if any) of Ci dominating e:

/* weighted version of binary search in Poset–BinInsertionSort, step 4dii */
set x = 1/2; t = 1/4; j∗ = 0;
repeat: find j such that x ∈ [bj , tj);

if (j = �i + 1 and ei,j−1 � e) or (eij � e and j = 1)
or (eij � e and ei,j−1 � e)

set j∗ = j; break; /* found smallest element in Ci that dominates e */
else if (j = �i + 1) or (eij � e)

set x = x− t; t = t ∗ 1/2; /* look below */
else

set x = x+ t; t = t ∗ 1/2; /* look above */
vi. eij∗ is the smallest element of chain Ci that dominates e;

set ER := ER ∪ ERj∗ and PR := PR ∪ PRj∗ ;
vii. find the largest element (if any) of chain Ci that is dominated by e:

for j = 0, 1, . . . , �i,
compute D′

ij , the number of posets on P consistent with P ′, (ER, PR),
in which eij is the largest element of chain Ci dominated by e;

/* j = 0 corresponds to case that no element of Ci is dominated by e; */

let D′
i =

∑�i
j=0 D′

ij ;

do the weighted binary search analogous to that of step v;
viii. update accordingly the sets ER and PR;

endfor

Fig. 3.2. Algorithm EntropySort is obtained by substituting step 4d′ given above for step 4d
of the pseudocode in Figure 3.1 for Poset–BinInsertionSort.

Proof of Lemma 3.6. Let λ =
Dij

Di
be the length of the interval that corresponds

to eij . We wish to prove that the number of queries needed to find eij (and determine
that it is the smallest element of Ci that dominates e) is at most 2(1+ log 1

λ �). From
the definition of the weighted binary search, we see that if the interval corresponding
to eij contains a point of the form 2−r ·m in its interior, where r,m are integers, then
the search completes after at most r iterations, each of which involves at most two
oracle queries. Now, an interval of length λ must include a point of the form 2−r ·m,
where r = 1+ log 1

λ �, which concludes the proof.

D
ow

nl
oa

de
d

07
/2

7/
16

 to
 1

30
.9

1.
11

8.
71

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SORTING AND SELECTION IN POSETS 605

It is important to note that the number of queries used by the weighted binary
search is small for uninformative insertions, which correspond to large Dij ’s, and large
for informative ones, which correspond to small Dij ’s. Hence, this explains our use of
the term entropy-weighted binary search. A parallel of Lemma 3.6 holds, of course,
for finding the largest element of chain Ci dominated by element e.

Suppose now that P = {e1, . . . , en}, where e1, e2, . . . , en is the order in which the
elements of P are inserted into poset P ′. Also, denote by Pk the restriction of poset P
onto the set of elements {e1, e2, . . . , ek} and by Zk the number of width-w extensions of
poset Pk onto P \{e1, . . . , ek} conditioned on (∅, ∅). Clearly, Z0 ≡ Nw(n) and Zn = 1.
The following lemma is sufficient to establish the optimality of EntropySort.

Lemma 3.7. EntropySort needs at most 4w+2 log Zk

Zk+1
oracle queries to insert

element ek+1 into poset Pk in order to obtain Pk+1.

Proof of Lemma 3.7. Let C = {C1, . . . , Cq} be the chain decomposition of the
poset Pk constructed at step 4c of EntropySort in the iteration of the algorithm
in which element ek+1 needs to be inserted into poset Pk. Suppose also that, for all
i ∈ {1, . . . , q}, πi ∈ {1, . . . , �i + 1} and κi ∈ {0, 1, . . . , �i} are the indices computed
by the binary searches of steps v and vii of the algorithm. Also, let Di, Dij , j ∈
{1, . . . , �i + 1}, and D′

i, D′
ij , j ∈ {0, . . . , �i}, be the quantities computed at steps ii,

iii, and vii. It is not hard to see that the following are satisfied:

Zk = D1; D′
qκq

= Zk+1;

Diπi = D′
i ∀i = 1, . . . , q; D′

iκi
= Di+1 ∀i = 1, . . . , q − 1.

Now, using Lemma 3.6, it follows that the total number of queries required to con-
struct Pk+1 from Pk is at most

q∑
i=1

(
2 + 2 log

Di

Diπi

+ 2 + 2 log
D′

i

D′
iκi

)
≤ 4w + 2 log

Zk

Zk+1
.

Using Lemma 3.7, the query complexity of EntropySort is

n−1∑
k=0

(# queries needed to insert element ek+1)

=
n−1∑
k=0

(
4w + 2 log

Zk

Zk+1

)

= 4wn+ 2 log
Z0

Zn
= 4wn+ 2 logNw(n).

Taking the logarithm of the upper bound in Theorem 3.1, it follows that the number
of queries required by the algorithm is 2n logn+ 8wn+ 2w logw.

3.2. An efficient sorting algorithm. We turn to the problem of efficient sort-
ing. Our Poset-Mergesort algorithm has superficially a recursive structure simi-
lar to the classical Mergesort algorithm. The merge step is quite different, however;
it makes use of the technical Peeling algorithm in order to efficiently maintain a
small chain decomposition of the poset throughout the recursion. The Peeling algo-
rithm, described formally in section 3.2.2, is a specialization of the classic flow-based
bipartite-matching algorithm [10] that is efficient in the comparison model.

D
ow

nl
oa

de
d

07
/2

7/
16

 to
 1

30
.9

1.
11

8.
71

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

606 DASKALAKIS, KARP, MOSSEL, RIESENFELD, AND VERBIN

Algorithm Poset-Mergesort(P)
input: a set P , an oracle for a poset P = (P,�), an upper bound w on width of P
output: a ChainMerge data structure for P
run Poset-Mergesort-Recurse(P) to obtain decomposition C of P into w chains;
build and return ChainMerge(P , C);

Procedure Poset-Mergesort-Recurse(P ′)
input: a subset P ′ ⊆ P , an oracle for P = (P,�), an upper bound w on width of P
output: a decomposition into at most w chains of the poset P ′ induced by � on P ′

if |P ′| ≤ w
then return the trivial decomposition of P ′ into chains of length 1

else
1. partition P ′ into two parts of equal size, P ′

1 and P ′
2;

2. run Poset-Mergesort-Recurse(P ′
1) and Poset-Mergesort-Recurse(P ′

2);
3. collect the outputs to get a decomposition C of P ′ into q ≤ 2w chains;
4. if q > w, run Peeling(P ,C) to get a decomposition C′ of P ′ into w chains;
return C′;

Fig. 3.3. Pseudocode for Poset-Mergesort.

3.2.1. Algorithm POSET-MERGESORT. Given a set P , a query oracle for
a poset P = (P,�), and an upper bound of w on the width of P , the Poset-

Mergesort algorithm produces a decomposition of P into w chains and concludes
by building a ChainMerge data structure. To get the chain decomposition, the
algorithm partitions the elements of P arbitrarily into two subsets of (as close as
possible to) equal size; it then finds a chain decomposition of each subset recursively.
The recursive call returns a decomposition of each subset into at most w chains,
which constitutes a decomposition of the whole set P into at most 2w chains. Then
the Peeling algorithm of section 3.2.2 is applied to reduce the decomposition to a
decomposition of w chains: given a decomposition of P ′ ⊆ P , where m = |P ′|, into at
most 2w chains, the Peeling algorithm returns a decomposition of P ′ into w chains
using 4wm queries and O(w2m) time. The pseudocode of Poset-Mergesort is
given in Figure 3.3, and its performance is characterized by the following theorem.

Theorem 3.8. Poset-Mergesort sorts any poset P of width at most w on n
elements using at most 4wn log(n/w) queries, with total complexity O(w2n log(n/w)).

Proof. The correctness of Poset-Mergesort is immediate. Let T (m) and Q(m)
be the worst-case total complexity and query complexity, respectively, of the procedure
Poset-Mergesort-Recurse on a poset of width w containing m elements. When
m ≤ w, T (m) = O(w) and Q(m) = 0. When m > w, T (m) = 2T (m/2) + O(w2m)
and Q(m) ≤ 2Q(m/2) + 2wm. Therefore, T (n) = O(w2n log(n/w)) and Q(n) ≤
2wn log(n/w). The cost incurred by the last step of the algorithm, i.e., that of building
the ChainMerge, is negligible.

3.2.2. The PEELING algorithm. We describe an algorithm that efficiently
reduces the size of a given decomposition of a poset. It can be seen as an adaptation
of the classic flow-based bipartite-matching algorithm [10] that is designed to be
efficient in the oracle model and has been optimized for reducing the size of a given
decomposition rather than constructing a minimum chain decomposition from scratch
[6]. The Peeling algorithm is given an oracle for poset P = (P,�), where n = |P |,
and a decomposition of P into q ≤ 2w chains. It first builds a ChainMerge data
structure using at most 2qn queries and time O(qn). Every query the algorithm makes
after that is actually a look-up in the data structure and therefore takes constant time

D
ow

nl
oa

de
d

07
/2

7/
16

 to
 1

30
.9

1.
11

8.
71

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SORTING AND SELECTION IN POSETS 607

Algorithm Peeling(P , C)
input: an oracle for poset P = (P,�), an upper bound w on the width of P ,

and a decomposition C = {C1, . . . , Cq} of P , where q ≤ 2w
output: a decomposition of P into w chains

build ChainMerge(P ,C); /* All further queries are look-ups. */
for i = 1, . . . , q

build linked list for chain Ci = ei�i → · · · → ei2 → ei1, where ei�i � · · · � ei2 � ei1;
while q > w, perform a peeling iteration:

1. for i = 1, . . . , q, set C′
i = Ci;

2. while every C′
i is nonempty

/* the largest element of each C′
i is a top element */

a. find a pair (x, y), x ∈ C′
i, y ∈ C′

j , of top elements such that y � x;
b. delete y from C′

j ; /* x dislodges y */
3. in sequence of dislodgements, find subsequence (x1, y1), . . . , (xt, yt) such that

• yt is the element whose deletion (in step 2b) created an empty chain;
• for i = 2, . . . , t, yi−1 is the parent of xi in its original chain;
• x1 is the top element of one of the original chains;

4. modify the original chains C1, . . . , Cq:
a. for i = 2, . . . , t

i. delete the pointer going from yi−1 to xi;
ii. replace it with a pointer going from yi to xi;

b. add a pointer going from y1 to x1;
5. set q = q − 1, and reindex the modified original chains from 1 to q − 1;

return the current chain decomposition, containing w chains

Fig. 3.4. Pseudocode for Peeling.

and no oracle call.
The Peeling algorithm proceeds in a number of peeling iterations. Each iteration

produces a decomposition of P with one less chain, until after at most w peeling iter-
ations, a decomposition of P into w chains is obtained. A detailed formal description
of the algorithm is given in Figure 3.4.

Theorem 3.9. Given an oracle for P = (P,�), where n = |P |, and a decomposi-
tion of P into at most 2w chains, the Peeling algorithm returns a decomposition of
P into w chains. It has query complexity at most 4wn and total complexity O(w2n).

Proof. To prove the correctness of one peeling iteration, we observe first that it
is always possible to find a pair (x, y) of top elements such that y � x, as specified in
step 2a, since the size of any antichain is at most the width of P , which is less than
the number of chains in the decomposition. We now argue that it is possible to find a
subsequence of dislodgements as specified by step 3. Let yt be the element defined in
step 3 of the algorithm. Since yt was dislodged by xt, xt was the top element of some
list when that happened. In order for xt to be a top element, it was either top from
the beginning, or its parent yt−1 must have been dislodged by some element xt−1,
and so on.

We claim that, given a decomposition into q chains, one peeling iteration produces
a decomposition of P into q−1 chains. Recall that y1 � x1 and, moreover, for every i,
2 ≤ i ≤ t, yi � xi, and yi−1 � xi. Observe that, after step 4 of the peeling iteration,
the total number of pointers has increased by 1. Therefore, if the link structure
remains a union of disconnected chains, the number of chains must have decreased by
1, since 1 extra pointer implies 1 less chain. It can be seen that the switches performed
by step 4 of the algorithm maintain the invariant that the in-degree and out-degree of
every vertex is bounded by 1. Moreover, no cycles are introduced, since every pointer

D
ow

nl
oa

de
d

07
/2

7/
16

 to
 1

30
.9

1.
11

8.
71

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

608 DASKALAKIS, KARP, MOSSEL, RIESENFELD, AND VERBIN

that is added corresponds to a valid relation. Therefore, the link structure is indeed
a union of disconnected chains.

The query complexity of the Peeling algorithm is exactly the query complexity
of ChainMerge, which is at most 4wn. We show next that one peeling iteration can
be implemented in time O(qn), which implies the claim.

In order to implement one peeling iteration in time O(qn), a little book-keeping
is needed, in particular, for step 2a. We maintain during the peeling iteration a list
L of potentially comparable pairs of elements. At any time, if a pair (x, y) is in L,
then x and y are top elements. At the beginning of the iteration, L consists of all
pairs (x, y), where x and y are top elements. Any time an element x that was not a
top element becomes a top element, we add to L the set of all pairs (x, y) such that
y is currently a top element. Whenever a top element x is dislodged, we remove from
L all pairs that contain x. When step 2a requires us to find a pair of comparable
top elements, we take an arbitrary pair (x, y) out of L and check whether x and y
are comparable. If they are not comparable, we remove (x, y) from L and try the
next pair. Thus, we never compare a pair of top elements more than once. Since
each element of P is responsible for inserting at most q pairs into L (when it becomes
a top element), it follows that a peeling iteration can be implemented in time
O(qn).

4. The k-selection problem. The k-selection problem is the natural problem
of finding the elements in the bottom k layers, i.e., the elements of height at most k−1,
of a poset P = (P,�), given the set P of n elements, an upper bound w on the width,
and a query oracle. We present upper and lower bounds on the query complexity
and total complexity of k-selection, for deterministic and randomized computational
models, for the special case of k = 1 as well as the general case. While our upper
bounds arise from natural generalizations of analogous algorithms for total orders,
the lower bounds are achieved quite differently. We conjecture that our deterministic
lower bound for the case of k = 1 is tight, though the upper bound is off by a factor
of 2.

4.1. Upper bounds. We provide deterministic and randomized upper bounds
for k-selection, which are asymptotically tight for k = 1. The basic idea for the k-
selection algorithms is to iteratively use the sorting algorithms presented in section 3
to update a set of candidates that the algorithm maintains. We begin with the 1-
selection problem, i.e., the problem of finding the minimal elements.

Theorem 4.1. The minimal elements of a poset can be found deterministically
with at most wn queries and total complexity O(wn).

Proof. The algorithm updates a set containing at most w elements that are
candidates for being the smallest elements. This set is initialized to T0 = ∅. Let
x1, . . . , xn be the elements of the poset. For 1 ≤ t < n, at step t, do the following:

• Compare xt to all elements in Tt−1.
• If there exists some a ∈ Tt−1 such that xt � a, then do nothing; i.e., let
Tt = Tt−1.
• Otherwise, set Tt to contain xt and those elements of Tt−1 that do not dom-
inate xt; i.e., let Tt = {xt} ∪ Tt−1 \ {a : a � xt}.

At the termination of the algorithm, the set Tn contains all elements of height 0. By
construction of Tt, for all t, the elements in Tt are mutually incomparable. Therefore,
for all t, it holds that |Tt| ≤ w, and hence the query complexity of the algorithm is at
most wn.

D
ow

nl
oa

de
d

07
/2

7/
16

 to
 1

30
.9

1.
11

8.
71

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SORTING AND SELECTION IN POSETS 609

Theorem 4.2. There exists a randomized algorithm that finds the minimal ele-

ments in an expected number of queries that is upper bounded by w+1
2 n+ w2−w

2 (logn−
logw).

Proof. The algorithm is similar to the algorithm for the proof of Theorem 4.1, with
modifications to avoid (in expectation) worst-case behavior. Let σ be a permutation
of [n] chosen uniformly at random. Let T1 =

{
xσ(1)

}
. For 1 ≤ t < n, at step t, do

the following:
• Let i be an index of the candidates in Tt−1, i.e., Tt−1 = {xi(1), . . . , xi(r)},
where r ≤ w.
• Let Tt = Tt−1. Let τ be a permutation of [r] chosen uniformly at random.
• For j = 1, . . . , r, do the following:

– If xσ(t) � xi(τ(j)), exit the inner “for” loop indexed by j and move to
step t+ 1.

– If xi(τ(j)) � xσ(t), remove xi(τ(j)) from Tt.
• Add xσ(t) to Tt.

As in the previous algorithm, it is easy to see that at each step t the set Tt contains all
the minimal elements of At = {xσ(1), . . . , xσ(t)} and that |Tt| ≤ w. Note, furthermore,
that at step t,

P[xσ(t) is minimal for At] ≤ w

t
.

If xσ(t) is not minimal for At, then the expected number of queries needed until xσ(t)

is compared to an element a ∈ At that dominates xσ(t) is clearly at most (w + 1)/2.
We thus conclude that the expected running time of the algorithm is bounded by

w∑
t=2

(t− 1) +
n∑

t=w+1

(
w

t
w +

(t− w)

t

(w + 1)

2

)
=

(
w

2

)
+

n∑
t=w+1

1

2t

(
w2 − w + tw + t

)

≤ w + 1

2
n+

w2 − w

2
(logn− logw).

We now turn to the k-selection problem for k > 1.
Theorem 4.3. The query complexity of the k-selection problem is at most

16wn + 4n log (2k)+6n logw. Moreover, there exists an efficient k-selection algorithm
with query complexity at most 8wn log (2k) and total complexity O(w2n log(2k)).

Proof. The basic idea is to use the sorting algorithm presented in previous sections
in order to update a set of candidates for the k-selection problem. Denote the elements
by x1, . . . , xn. Let C0 = ∅. The algorithm proceeds as follows, beginning with t=1:

• While (t− 1)wk + 1 ≤ n, let Dt = Ct−1 ∪ {x(t−1)wk+1, . . . , xmin(twk,n)}.
• Sort Dt. Let Ct be the solution of the k-selection problem for Dt.

Clearly, at the end of the execution, the last Ct will contain the solution to the
k-selection problem. As we have shown, the query complexity of sorting Dt is
4wk log (2wk) + 16w2k + 2w logw and, therefore, the query complexity of the al-
gorithm is n

wk (4wk log (2wk) + 16w2k + 2w logw) = 4n log (2wk) + 16wn+ 2n
k logw.

This proves the first result. Using the computationally efficient sorting algorithm, we
have sorting query complexity 8w2k log (2k), which results in total query complexity
8nw log (2k) and total complexity O(nw2 log(2k)).

Next we outline a randomized algorithm with a better coefficient of the main term
wn.

Theorem 4.4. The k-selection problem has a randomized query complexity of at
most wn+ 16kw2 logn log(2k) and total complexity O(wn+ poly(k, w) logn).

D
ow

nl
oa

de
d

07
/2

7/
16

 to
 1

30
.9

1.
11

8.
71

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

610 DASKALAKIS, KARP, MOSSEL, RIESENFELD, AND VERBIN

Proof. We use the following algorithm:

• Choose an ordering x1, . . . , xn of the elements uniformly at random.
• Let Cwk = {x1, . . . , xwk} and Dwk = ∅.
• Sort Cwk. Remove any elements from Cwk that are of height greater than
k − 1.
• Let t = wk + 1. While t ≤ n do:

– Let Ct = Ct−1 and Dt = Dt−1.
– Compare xt to the maximal elements in Ct in a random order.
∗ For each maximal element a ∈ Ct: if height(a) = k − 1 and a � xt,
or if height(a) < k − 1 and xt � a, then add xt to Dt and exit this
loop.
∗ If for all elements a ∈ Ct, xt �∼ a, then add xt to Dt and exit this
loop.

– If |Dt| = wk or t = n:
∗ Sort Ct ∪Dt.
∗ Set Ct to be the elements of height at most k − 1 in Ct ∪Dt.
∗ Set Dt = ∅.

• Output the elements of Cn.

It is clear that Cn contains the solution to the k-selection problem. To analyze
the query complexity of the algorithm, recall from Theorem 3.8 that s(w, k) =
8w2k log(2k) is an upper bound on the number of queries used by the efficient sorting
algorithm to sort 2wk elements in a width-w poset.

There are two types of contributions to the number of queries made by the al-
gorithm: (1) comparing elements to the maximal elements of Ct, and (2) sorting the
sets C0 and Ct ∪Dt.

To bound the expected number of queries of the first type, we note that for
t ≥ kw + 1, since |{Ct ∪Dt}| ≤ 2kw and the elements are in a random order, the
probability that xt ends up in Dt is at most min

(
1, 2kwt

)
. If xt is not going to be in

Dt, then the number of queries needed to verify this is bounded by w. Overall, the
expected number of queries needed for comparisons to maximal elements is bounded
by wn.

To calculate the expected number of queries of the second type, we bound the
expected number of elements that need to be sorted as follows:

n∑
t=kw+1

min

(
1,

2kw

t

)
≤ 2kw(logn− 1).

Thus the total query complexity is bounded above by wn+ 2s(w, k) logn.

4.2. Lower bounds. We obtain lower bounds for the k-selection problem both
for adaptive and nonadaptive adversaries. Some of our proofs use the following lower
bound of Fussenegger and Gabow on finding the set containing the k smallest elements
of a total order on n elements.

Theorem 4.5 (Fussenegger and Gabow [12]). The number of queries required to
find the set of the k smallest elements of an n-element total order is at least n− k +
log(

(
n

k−1

)
/k).

The proof of Theorem 4.5 shows that every comparison tree that identifies the
kth smallest element must have at least 2n−k

(
n

k−1

)
leaves, which has the consequence

that the theorem also holds for randomized algorithms.

D
ow

nl
oa

de
d

07
/2

7/
16

 to
 1

30
.9

1.
11

8.
71

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SORTING AND SELECTION IN POSETS 611

4.2.1. Adversarial lower bounds. We consider adversarial lower bounds for
the k-selection problem. In this model, an adversary simulates the oracle and is
allowed to choose her response to a query after receiving it. A response is legal if
there exists a partial order of width at most w with which this response and all
previous responses are consistent.

The adversarial algorithm for Theorem 4.6 outputs query responses that corre-
spond to a poset P of w disjoint chains. Along with outputting a response to a query,
the algorithm may also announce for a queried element to which chain it belongs. In
any proof that an element a is not a smallest element, it must be shown to dominate
at least one other element. The algorithm is designed so that in order for such a
response to be given, a must first be queried against at least w − 1 other elements
with which it is incomparable.

The algorithm for Theorem 4.7 is based on a similar idea but uses a more specific
rule for assigning queried elements to chains. The responses are designed to achieve
a trade-off between the case when few chains are short, when Theorem 4.5 implies
that the number of queries required must be large, and the case when many chains are
short, when the algorithmmust ensure that the number of pairs declared incomparable
is large. Achieving this goal is technically challenging, as the rather involved details
of the proof demonstrate.

Theorem 4.6. In the adversarial model, at least w+1
2 n − w queries are needed

in order to find the minimal elements.

Proof. Consider the following adversarial algorithm. The algorithm outputs query
responses that correspond to a poset P of w disjoint chains. Given a query q(a, b), the
algorithm outputs a response to the query, and in some cases, it may also announce
for one or both of a and b to which chain the element belongs. Note that receiving
this extra information can make things only easier for the query algorithm. During
the course of the algorithm, the adversary maintains a graph G = (P,E). Whenever
the adversary responds that a �∼ b, it adds an edge (a, b) to E.

Let qt(a) be the number of queries that involve element a, out of the first t
queries overall. Let c(a) be the chain assignment that the adversary has announced
for element a. (We set c(a) to be undefined for all a, initially.) Let {xi}ni=1 be an
indexing, chosen by the adversary, of the elements of P . Let q(a, b) be the tth query.
The adversary follows the following protocol:

• If qt(a) ≤ w− 1 or qt(b) ≤ w− 1, return a �∼ b. In addition, do the following:
– If qt(a) = w − 1, choose a chain c(a) for a that is different from all the

chains to which a’s neighbors in G belong and output it.
– If qt(b) = w − 1, choose a chain c(b) for b that is different from all the

chains to which b’s neighbors in G belong and output it.
• If qt(a) > w − 1, qt(b) > w − 1, and c(a) �= c(b), then output a �∼ b.
• Otherwise, let i and j be the indices of a and b, respectively (i.e., a = xi and

b = xj). If i > j, then output a � b; otherwise, output b � a.

It is easy to see that the output of the algorithm is consistent with a width-w poset
consisting of w chains that are pairwise incomparable. We will also require that each
of the chains be chosen at least once (this is achieved easily).

We now prove a lower bound on the number of queries to this algorithm required
to find a proof that the minimal elements are indeed the minimal elements.

In any proof that a is not a smallest element, it must be shown to dominate
at least one other element, but to get such a response from the adversary, a must
be queried against at least w − 1 other elements with which it is incomparable. To

D
ow

nl
oa

de
d

07
/2

7/
16

 to
 1

30
.9

1.
11

8.
71

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

612 DASKALAKIS, KARP, MOSSEL, RIESENFELD, AND VERBIN

prove that a minimal element of one chain is indeed minimal, it must be queried at
least against the minimal elements of the other chains to rule out the possibility it
dominates one of them. Therefore, each element must be compared to at least w − 1
elements that are incomparable to it. So the total number of queries of type q(a, b),
where a �∼ b, is at least w−1

2 n.
In addition, for each chain ci of length ni, the output must provide a proof of

minimality for the minimal element of that chain. By Theorem 4.5, this contributes
ni − 1 queries for each chain ci.

Summing over all the bounds proves the claim.

Theorem 4.7. Let r = n
2w−1 . If k ≤ r, then the number of queries required to

solve the k-selection problem is at least

(w + 1)n

2
− wk − w3

8
+ min

(
(w − 2) log

((
r

k − 1

)
/k

)
+ log

(
rw

k − 1

)
,

n(w − 1)(r − k)

2r
− log

((
r

k − 1

)
/k

)
+ log

(
n− (w − 1)k

k − 1

))
.

Proof. The adversarial algorithm outputs query responses exactly as in the proof
of Theorem 4.6, except in the case where the tth query is (a, b) and qt(a) = w − 1 or
qt(b) = w − 1. In that case it uses a more specific rule for the assignment of one or
both of these elements to chains.

In addition to assigning the elements to chains, the process must also select the
k smallest elements in each chain, and Theorem 4.5 gives a lower bound, in terms of
the lengths of the chains, on the number of queries required to do so.

The specific color assignment rule is designed to ensure that if, at the end, the
number of elements with color c is small, then there must have been many queries in
which the element being colored could not receive color c because it had already been
declared incomparable to an element with color c.

It will then follow that if many of the chains are very short, then the number of
pairs declared incomparable must be very large.

Assignment of colors. We think of the assignment of elements to chains as
a coloring of the elements with w colors. The color assignment rule is based on a
function dt(c), referred to as the deviation of color c after query t, and satisfies the
initial condition d0(c) = 0 for all c. The rule is “assign the eligible color with smallest
deviation.”

More specifically, let the tth query be (at, bt). The adversary processes at and
then bt. Recall that qt(a) is the number of queries involving element a out of the first
t queries overall. Element e ∈ {at, bt} is processed exactly as in the proof of Theorem
4.6, except when qt(e) = w−1. In that case, let St(e) be the set of colors that are not
currently assigned to neighbors of e, i.e., the set of colors eligible to be assigned to
element e. Let c∗ = argminc∈St(e) dt−1(c). The adversary assigns color c∗ to e. Then
the deviations of all colors are updated as follows:

1. if c �∈ St(e), then dt(c) = dt−1(c);
2. dt(c

∗)← dt−1(c
∗) + 1− 1

|St(e)| ;
3. for c ∈ St(e) \ {c∗}, dt(c)← dt−1(c)− 1

|St(e)| .
The deviation function dt(c) has the following interpretation: over the history of

the color assignment process, certain steps occur where the adversary has the choice
of whether to assign color c to some element; dt(c) represents the number of times
that color c was chosen up to step t, minus the expected number of times it would

D
ow

nl
oa

de
d

07
/2

7/
16

 to
 1

30
.9

1.
11

8.
71

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SORTING AND SELECTION IN POSETS 613

have been chosen if the same choices had been available at all steps and the color had
been chosen uniformly at random from the set of eligible colors.

Because the smallest of the deviations of eligible colors is augmented at each
step, it is not possible for any deviation to drift far from zero. It is easily shown by
induction on t that at every step t the sum of the deviations is zero. In addition, we
use the following lemma.

Lemma 4.8. For m = 1, 2, . . . , w, the sum of the m smallest deviations is at least
m(m−w)

2 .

In other words, the average deviation of every set ofm colors is at least (m−w)/2.
Proof of Lemma 4.8. The proof is by induction on t. Initially, all deviations are

0. We assume the claim in Lemma 4.8 is true after each of the first t− 1 queries. For
any set C of colors, let dt(C) =

∑
c∈C dt(c) be the total deviation of C after the tth

update.

There are two possibilities: c′ was ineligible or eligible for the tth query. If c′ was
ineligible, then its deviation did not change; hence dt(c

′) = dt−1(c
′) ≥ (1−w)

2 . If c′

was eligible and chosen, then c′ = c∗ and dt(c
′) ≥ dt−1(c

∗) + 1 − 1
|St(e)| ≥

(1−w)
2 . If

c′ was eligible but not selected, then dt−1(c
′) ≥ dt−1(c

∗), and we use the inductive
hypothesis for m = 2, which guarantees that dt−1(c

′) + dt−1(c
∗) ≥ 2− w, as follows.

For any m ∈ [1, w], let Cm
t be the set of colors with the m smallest deviations

after the tth query. Let X = Cm
t ∩ St(e) be the set of colors in Cm

t that were eligible
for the tth query. For all c ∈ Cm

t \ X , dt(c) = dt−1(c). Hence, if X = ∅, then the
bound holds trivially. If X �= ∅, we consider two possibilities: the color c∗ that is
assigned after the tth query is either in X or not.

If c∗ ∈ X , then the deviation gain of c∗ easily makes up for any loss among the
other colors in Cm

t :

dt(C
m
t) = dt(X) + dt(C

m
t \X)

= dt−1(c
∗) + 1− 1

|St(e)| +
∑

c∈X\{c∗}

(
dt−1(c)− 1

|St(e)|
)
+ dt−1(C

m
t \X)

≥ dt−1(c
∗) + dt−1(X \ {c∗}) + dt−1(C

m
t \X)

= dt−1(C
m
t)

≥ m(m− w)

2
,

where the last inequality holds by the inductive hypothesis.

We now assume c∗ �∈ X . Let k = |X | ≥ 1, so St(e) must contain at least k + 1
colors. By the update rules, we have the following lower bound:

dt(C
m
t) ≥ dt−1(C

m
t)− k

k + 1
.

It remains to show that the set Cm
t has enough total deviation at step t − 1 to

make up for the loss. By definition of c∗, for all c ∈ St(e) (and thus for all c ∈ X),
dt−1(c) ≥ dt−1(c

∗). Let Q = Cm
t ∪ {c∗}, and let R = Cm

t \X . Then |Q| = m+1, and
|R| = m − k. We observe that, since c∗ has minimum deviation among the colors of

D
ow

nl
oa

de
d

07
/2

7/
16

 to
 1

30
.9

1.
11

8.
71

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

614 DASKALAKIS, KARP, MOSSEL, RIESENFELD, AND VERBIN

X ∪ {c∗},

dt−1(X) ≥ k

(k + 1)
dt−1(X ∪ {c∗})

=
k

(k + 1)
(dt−1(Q)− dt−1(R)) .

We use this inequality along with two applications of the inductive hypothesis to
get a lower bound on dt−1(C

m
t) as follows:

dt−1(C
m
t) = dt−1(X) + dt−1(R)

≥ k

(k + 1)
(dt−1(Q)− dt−1(R)) + dt−1(R)

=
k

(k + 1)
dt−1(Q) +

1

(k + 1)
dt−1(R)

≥ k

(k + 1)

(m+ 1)(m+ 1− w)

2
+

1

(k + 1)

(m− k)(m− k − w)

2

=
m(m− w)

2
+

k

2
.

Putting the bounds together yields the following result:

dt(C
m
t) ≥ m(m− w)

2
+

k

2
− k

k + 1
≥ m(m− w)

2
.

Let degG(a) be the degree of a in G at the end of the color assignment pro-
cess. The total number of pairs of elements that have been declared incomparable
is 1

2

∑
a degG(a). At the end of the process, every element of degree in G at least

w − 1 has been assigned to a chain. Each element of degree less than w − 1 has not
been assigned to a chain and is therefore called unassigned. An unassigned element is
called eligible for chain c if it has not been compared (and found incomparable) with
any element of chain c.

Let s(c) be the length of chain c. We define def(c), the deficiency of chain c, as
def(c) = max(0, k − s(c)) and the total deficiency def as the sum of the deficiencies
of all chains: def =

∑
c def(c).

The following two lemmas lower bound the degrees in G of unassigned elements
and chains.

Lemma 4.9. Let U be the set of unassigned elements at the termination of the
color assignment process. Let u = |U | be the number of unassigned elements. Then∑

a∈U

degG(a) ≥ (w − 1)u− def.

Proof of Lemma 4.9. Upon the termination of the process it must be possible to
infer from the results of the queries that every unassigned element is of height at most
k − 1. This implies that the number of unassigned elements eligible for chain c must
be at most def(c). Thus the number of pairs (a, c) such that unassigned element a is
eligible for chain c is at most def.

Let the deficiency of unassigned element a be defined as def(a) = w−1−degG(a).
Then

∑
a∈U def(a) ≤ def, and therefore

∑
a∈U degG(a) ≥ (w − 1)u− def.

D
ow

nl
oa

de
d

07
/2

7/
16

 to
 1

30
.9

1.
11

8.
71

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SORTING AND SELECTION IN POSETS 615

Lemma 4.10. Let d(c) be the deviation of color c at the end of the color assign-
ment process. Then∑

a|c(a)=c

degG(a) ≥ max((w − 1)s(c), n− w(s(c) − d(c))).

Proof of Lemma 4.10. Let r(c) be the number of steps in the course of the process
at which the element being colored was eligible to receive color c. If, at each such
step, the color had been chosen uniformly from the set of eligible colors, then the
chance of choosing color c would have been at least 1

w . Thus, by our interpretation of

the function dt(c) given above, s(c) ≥ r(c)
w + d(c); equivalently, r(c) ≤ w(s(c)− d(c)).

As color c is ineligible during the color assignment of element a only if there exists
an edge between a and an element colored c, the following inequality holds:∑

a|c(a)=c

degG(a) ≥ n− r(c)

≥ n− w(s(c) − d(c)).

This sum is also at least (w − 1)s(c), since every element assigned to c has been
declared incomparable with at least (w − 1) other elements.

To formulate a lower bound, we give a name to the quantity in the Fussenegger–
Gabow lower bound (Theorem 4.5); i.e., we define

g(s) = s− k + log

((
s

k − 1

)
/k

)
.

Then, for each chain c, we define a cost function as follows:

cost(c) =
1

2

∑
a|c(a)=c

degG(a) + max (0, g(s(c))) .

We can now give a lower bound in terms of the cost function.
Lemma 4.11. The number of queries required to solve k-selection is at least

(1)
∑
c

cost(c) +
1

2
((w − 1)u− def) ,

and ∑
c

cost(c) ≥ 1

2

∑
c

max ((w − 1)s(c), n− w(s(c) − d(c))) +
∑

c|s(c)>k

g(s(c)).

Proof of Lemma 4.11. The total number of queries is the number of edges that
have been placed in G in the course of the algorithm (i.e., the number of pairs that have
been declared incomparable by the adversary), plus the number of queries required
to perform k-selection in each chain. Using Lemma 4.9, we find that the number of
edges in G is at least 1

2 ((w− 1)u− def+
∑

c

∑
a|c(a)=c degG(a)). By Theorem 4.5, if

s(c) > k, then at least g(s(c)) queries are needed to determine the k smallest elements
of chain c. Hence, quantity (1) is a lower bound on the total number of queries. The
lower bound on the sum

∑
c cost(c) is implied by Lemma 4.10.

To continue with the calculation of our lower bound, we now minimize quantity (1)
over all choices of nonnegative integers s(c), u, and def, such that

∑
c s(c) + u = n

and def =
∑

c max(0, k − s(c)).

D
ow

nl
oa

de
d

07
/2

7/
16

 to
 1

30
.9

1.
11

8.
71

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

616 DASKALAKIS, KARP, MOSSEL, RIESENFELD, AND VERBIN

Noting that
∑

c min(d(c), 0) ≥ minm m(m − w)/2 = −w2/8, we obtain the fol-
lowing lower bound on the total number of queries:

∑
c

cost(c) +
1

2
((w − 1)u− def)(2)

=
1

2

(
(w − 1)u− def+

∑
c

max ((w − 1)s(c), n− w(s(c) − d(c)))

)
+

∑
c|s(c)>k

g(s(c))

≥ (w − 1)n

2
− def

2
− w3

8
+

1

2

∑
c

max (0, n− (2w − 1)s(c)) +
∑

c|s(c)>k

g(s(c)).

Let r = n
2w−1 . We now restrict our attention to the case k ≤ r. First, we show

that, at any global minimum of quantity (2), def = 0. To see this, consider any
choice of {s(c)} such that def > 0, and let c be a chain such that def(c) > 0. If
s(c) is increased by 1, then def decreases by 1 and the net change in the value of
quantity (2) is 1

2 + 1
2 (−(2w − 1)) = 1− w, which is negative.

Thus, in minimizing quantity (2) we may assume that def = 0 and hence that∑
c s(c) = n. So, we may rewrite the inequality in line (2) as

∑
c

cost(c) +
1

2
((w − 1)u− def) ≥ (w − 1)n

2
− w3

8
+
∑
c

F (s(c)),(3)

where

F (s) =

{
1
2 max(0, n− (2w − 1)s) if s ≤ k,
1
2 max(0, n− (2w − 1)s) + g(s) if s > k.

The following lemma, combined with inequality (3) and Lemma 4.11, yields the claim
of Theorem 4.7.

Lemma 4.12. Subject to the constraints that, for all c, s(c) ≥ 0, and
∑

c s(c) = n,
the sum

∑
c F (s(c)) is at least

n− wk +min

(
(w − 2) log

((
r

k − 1

)
/k

)
+ log

(
rw

k − 1

)
,

n(w − 1)(r − k)

2r
− log

((
r

k − 1

)
/k

)
+ log

(
n− (w − 1)k

k − 1

))
.

Proof of Lemma 4.12. First, we observe that
∑

c|k<s(c)(s(c) − k) = n − wk. To

determine the minimum of
∑

c F (s(c)), we consider three ranges of the values of s(c):
the low range where s(c) = k, the medium range where k < s(c) ≤ r, and the high
range where r < s(c) ≤ n.

As F (s) is either piecewise linear or a sum of piecewise linear functions and the
log function, it is straightforward to check that F (s) is strictly concave in the medium
range, and concave and strictly increasing in the high range. Therefore, given a pair
of values s(c1), s(c2) in the high range, the value of the objective function

∑
c F (s(c))

is not increased by decreasing s(c1) by 1 and increasing s(c2) by 1. All but one of
the values in the high range may thus be pushed to r, and hence we may assume that
there is exactly one chain whose length is in the high range. By similar reasoning, it
follows that all but one of the values in the medium range may be pushed to either

D
ow

nl
oa

de
d

07
/2

7/
16

 to
 1

30
.9

1.
11

8.
71

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SORTING AND SELECTION IN POSETS 617

k or r, while there may remain one value falling strictly within the medium range.
Hence, we may assume that for every s(c) that falls in the medium range, except for
one possible exception, s(c) = r.

Since
∑

c|k≤s(c)≤r s(c) ≤ r(w − 1), the unique value of s(c) in the high range is

at least rw. Let D = r(w − 1)−∑c|k≤s(c)≤r s(c). Then the unique value in the high
range is rw+D. Since every value, except possibly one, in the low and medium ranges
is equal to k or r, the number of chains of length r is at least w − 2 − D

r−k . Hence,∑
c|k<s(c)≤r log(

(
s(c)
k−1

)
/k) ≥ (w − 2− D

r−k) log(
(

r
k−1

)
/k). Finally, a simple calculation

shows that 1
2

∑
cmax(0, n− (2w − 1)s(c)) = nD

2r .
Thus

∑
c F (s(c)) is at least

n−wk+ min
0≤D≤(w−1)(r−k)

(
nD

2r
+

(
w − 2− D

r − k

)
log

((
r

k − 1

)
/k

)
+ log

(
rw +D

k − 1

))
.

Since this is a concave function in D, it is minimized either at D = 0 or D =
(w − 1)(r − k). Substituting and simplifying gives the lower bound claimed.

4.2.2. Lower bounds in the randomized query model. We also give lower
bounds on the number of queries used by randomized k-selection algorithms. We
conjecture that the randomized algorithm for finding the minimal elements given in
the proof of Theorem 4.2 essentially achieves the lower bound, though the lower bound
we prove here is a factor 2 different from that upper bound.

Theorem 4.13. The expected query complexity of any algorithm solving the k-
selection problem is at least

w + 3

4
n− wk + w

(
1− exp

(
− n

8w

))(
log

((
n/(2w)

k − 1

)
/k

))
.

Proof. We consider a distribution D(n,w) on partial orders of width w over a set
P = {x1, . . . , xn}. The distribution D(n,w) is defined as follows:

• The support of D(n,w) is the set of partial orders consisting of w chains,
where any two elements from different chains are incomparable.
• Each element belongs independently to one of the w chains with equal prob-
ability.
• The linear order on each chain is chosen uniformly.

In order to provide a lower bound on the number of queries, we provide a lower
bound on the number of queries of incomparable elements and then use the classical
bound to bound the number of queries of comparable elements.

First, we note that for each element a the algorithm must make either at least one
query where a is comparable to some other element b or at least w − 1 queries where
a is incomparable to all elements queried. (The latter may suffice in cases where a is
the unique element of a chain and it is compared to all minimal elements of all other
chains.)

We let Yt(i) denote the number of queries involving xi before the first query for
which the response is that xi is comparable to an element. Also for each of the chains
C1, . . . , Cw we denote by Zα the number of queries involving two elements from the
same chain.

Letting T denote the total number of queries before the algorithm terminates, we
obtain

E[T] ≥
n∑

i=1

1

2
E[YT (i)] +

w∑
α=1

E[Zα].

D
ow

nl
oa

de
d

07
/2

7/
16

 to
 1

30
.9

1.
11

8.
71

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

618 DASKALAKIS, KARP, MOSSEL, RIESENFELD, AND VERBIN

We claim that for all 1 ≤ i ≤ n we have E[YT (i)] ≥ w−1
2 . This follows by

conditioning on the chains that all other elements but xi belong to. With probability
1/w, the first query will give a comparison; with probability 1/w, the second query,
etc.

On the other hand, by the classical lower bound in Theorem 4.5, we have for each
1 ≤ α ≤ w that

Zα ≥ |Cα| − k + log

((|Cα|
k − 1

)
/k

)
.

Taking the expected value, we obtain

E[Zα] ≥ n

w
− k +E

[
log

((|Cα|
k − 1

)
/k

)]
.

A rough bound on the previous expression may be obtained by using the fact that by
standard Chernoff bounds, except with probability exp(− n

8w), it holds that Cα is of
size at least n/(2w). Therefore

E

[
log

((|Cα|
k − 1

)
/k

)]
≥
(
1− exp

(
− n

8w

))
log

((
n/(2w)

k − 1

)
/k

)
.

Summing all of the expressions above, we obtain

(w − 1)n

4
+ w

(n
w
− k
)
+
(
1− exp

(
− n

8w

))
w log

((
n/(2w)

k − 1

)
/k

)
,

and simplifying gives the desired result.

5. Computing linear extensions and heights. We provide upper bounds for
two problems that are closely related to the problem of determining a partial order:
given a poset, compute a linear extension, and compute the heights of all elements.
A total order (P,>) is a linear extension of a partial order (P,�) if, for any two
elements x, y ∈ P , x � y implies x > y.

Our algorithms are analogous to Quicksort, and are based on a ternary search
tree, an extension of the well-known binary search tree for maintaining elements of a
linear order.

Theorem 5.1. There is a randomized algorithm that, given a poset of size n
and width at most w, computes a linear extension of the poset and has expected total
complexity O(n logn+ wn).

Proof. A ternary search tree for a poset P = (P,�) consists of a root, a left
subtree, a middle subtree, and a right subtree. The root contains an element x ∈ P ,
and the left, middle, and right subtrees are ternary search trees for the restrictions
of P to the sets {y |x � y}, {y |x �∼ y}, and {y | y � x}, respectively. The ternary
search tree for the empty poset consists of a single empty node.

We give a simple randomized algorithm to construct a ternary search tree for P
as follows: The algorithm assigns a random element of P to the root, compares each
of the n−1 other elements to the element at the root to determine the sets associated
with the three children of the root, and then, recursively, constructs a ternary search
tree for each of these three sets.

D
ow

nl
oa

de
d

07
/2

7/
16

 to
 1

30
.9

1.
11

8.
71

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SORTING AND SELECTION IN POSETS 619

Define the weight of an internal node x of a ternary search tree as the total
number of internal nodes in its three subtrees and the weight of a ternary search tree
as the sum of the weights of all internal nodes. Then the number of queries required
to construct a ternary search tree is exactly the weight of the tree.

Lemma 5.2. The expected weight of a ternary search tree for any poset of size n
and width w is O(n logn+ wn).

Proof of Lemma 5.2. Consider the path from the root to a given element x. The
number of edges in this path from a parent to a middle subtree is at most w. The
expected number of edges from a parent to a left or right subtree is O(log n), since, at
every step along the path, the probability is at least 1/2 that the sizes of the left and
right subtrees differ by at most a factor of 3. It follows that the expected contribution
of any element to the weight of the ternary search tree is w +O(log n).

Once a ternary search tree for a poset has been constructed, a linear extension
can be constructed by a single depth-first traversal of the tree. If x is the element at
the root, then the linear extension is the concatenation of the linear extensions of the
following four subsets, corresponding to the node and its three subtrees: {y |x � y},
{x}, {y |x �∼ y}, and {y | y � x}. The claim follows.

Theorem 5.3. There is a randomized algorithm that, given a poset of size n
and width at most w, determines the heights of all elements and has expected total
complexity O(wn log n).

Proof. We establish first the following lemma.
Lemma 5.4. There is a deterministic algorithm that, given a linear extension of

a poset of size n and width at most w, computes the heights of all elements and has
total complexity O(wn log n).

Proof of Lemma 5.4. Let h(x) = h be the height of element x in (P,�). Given a
linear extension xn > · · · > x2 > x1, it is easy to compute h(x) for each element x by
binary search using the following observation: Let

S(i, h) = {xj | j ≤ i, h(xj) = h}

be the set of elements of index at most i in the linear extension and of height h in
(P,�). Then |S(i, h)| ≤ w (as the elements of S(i, h) are pairwise incomparable), and
h(xi+1) > h if and only if there exists x ∈ S(i, h) such that xi+1 � x. Thus, given
the sets S(i, h), for all h, we can determine h(xi+1) and the sets S(i+ 1, h), for all h,
in time O(w log i) using binary search. Summing over i yields the claim.

Combining the algorithms of Theorem 5.1 and Lemma 5.4 yields the claim.

6. Variants of the poset model. We discuss sorting in two variants of the
poset model that occur when different restrictions are relaxed. First, we consider
posets for which a bound on the width is not known in advance. Second, we allow
the irreflexivity condition to be relaxed, which leads to transitive relations. We show
that with relatively little overhead in complexity, sorting in either case reduces to the
problem of sorting posets.

6.1. Unknown width. Recall from section 3 thatNw(n) is the number of posets
of width at most w on n elements.

Claim 6.1. Given a set P of n elements and access to an oracle for poset
P = (P,�) of unknown width w, there is an algorithm that sorts P using at most
logw (2 logN2w(n) + 8wn) = Θ(n logw (logn+ w)) queries, and there is an efficient
algorithm that sorts P using at most 8nw logw log(n/(2w)) queries with total com-
plexity O(nw2 logw log(n/w)).

D
ow

nl
oa

de
d

07
/2

7/
16

 to
 1

30
.9

1.
11

8.
71

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

620 DASKALAKIS, KARP, MOSSEL, RIESENFELD, AND VERBIN

Proof. We use an alternate version of EntropySort that returns fail if it cannot
insert an element (while maintaining a decomposition of the given width) and an
alternate version of Poset-Mergesort that returns fail if the Peeling algorithm
cannot reduce the size of the decomposition to the given width. The first algorithm of
the claim is, for i = 1, 2, . . . , to run the alternate version of algorithm EntropySort

on input set P , the oracle, and width upper bound 2i until the algorithm returns
without failing. The second algorithm is analogous but uses the alternate version of
Poset-Mergesort. The claim follows from Theorems 3.5 and 3.8 and from the fact
that we reach an upper bound of at most 2w on the width of P in logw rounds.

6.2. Transitive relations. A partial order is a particular kind of transitive
relation. Our results generalize to the case of arbitrary transitive relations (which are
not necessarily irreflexive or antisymmetric) and are therefore relevant to a broader
set of applications. Formally, a transitive relation is a pair (P,�), where P is a set of
elements and � ⊆ P ×P is transitive. The width of a transitive relation is defined to
be the maximum size of a set of mutually incomparable elements.

Claim 6.2. Suppose there is an algorithm A that, given a set P of n elements,
access to an oracle O� for a poset P = (P,�), and an upper bound of w on the
width of P, sorts P using f(n,w) queries and g(n,w) total complexity. Then there
is an algorithm B that, given P , w, and access to an oracle O� for a transitive
relation (P,�) of width at most w, sorts (P,�) using f(n,w) + 2nw queries and
g(n,w) +O(nw) total complexity.

Proof. We say that a poset (P,�) is induced by a transitive relation (P,�) if �⊆
�. A poset (P,�) is minimally induced by (P,�) if for any relation (x, y) ∈ �\ � the
pair (P,� ∪ (x, y)) is not a valid partial order; i.e., its corresponding graph contains
a directed cycle.

We require the following lemma, bounding the width of a minimally induced
poset.

Lemma 6.1. Let (P,�) be a poset minimally induced by the transitive relation
(P,�). Then the width of (P,�) is equal to the width of (P,�).

Proof of Lemma 6.1. Suppose otherwise; that is, suppose that there is a pair of
distinct elements x, y ∈ P such that x �∼ y with respect to the partial order (P,�),
but x and y have some relation in (P,�). Without loss of generality, suppose that
x�y; it may be simultaneously true that y�x. First, we note that (P,� ∪ (x, y)) is a
valid partial order; if it were not, i.e., if the addition of (x, y) introduced a cycle, then
it would be the case that y � x, which is a contradiction to their incomparability.
However, the poset (P,� ∪ (x, y)) is also induced by (P,�), which contradicts the
assumption that (P,�) is minimally induced.

We assume that the poset sorting algorithm outputs a chain decomposition (such
as a ChainMerge); if it does not, the total complexity of the algorithm for sorting
a transitive relation increases a bit, but its query complexity does not.

Given an oracle O� for the transitive relation (P,�), we define a special poset
oracle O that runs as follows: Given a query q(x, y), the oracle O first checks whether
the relation between x and y can be inferred by transitivity and irreflexivity from
previous responses. If so, it outputs the appropriate inferred response; otherwise, it
forwards the query to the oracle O�. The oracle O outputs the response of O� except
if both x� y and y � x; in this case, O outputs whichever relation is consistent with
the partial order determined by previous responses (if both relations are consistent,
then it arbitrarily outputs one of the two). By definition, the responses of O are
consistent with a partial order induced by (P,�).

D
ow

nl
oa

de
d

07
/2

7/
16

 to
 1

30
.9

1.
11

8.
71

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SORTING AND SELECTION IN POSETS 621

The first step of algorithm B is to run algorithm A on input P and w, giving
A access to the special oracle O, which B simulates using its access to O�. Since A
completely sorts its input, it reconstructs a poset induced by (P,�) via O that has
a maximal set of relations. That is, there is a poset P = (P,�) minimally induced
by (P,�) such that the responses of O to the sequence of queries made by A are
indistinguishable from the responses of O� to the same sequence of queries. Since
P has the same width as (P,�), it is valid to give A the upper bound of w. Hence,
A sorts P and outputs some chain decomposition C = {C1, . . . , Cq} of P such that
q ≤ w.

The second step of algorithm B is to make a sequence of queries to the oracle
O� to recover the relations in �\ �. It is similar to building a ChainMerge data
structure: for all i, j, 1 ≤ i, j ≤ q, for every element x ∈ Ci, we store the index of x
in chain Ci and the index of the largest element y ∈ Cj such that x� y. An analysis
similar to the one for ChainMerge (see section 2) shows that it takes at most 2nq
queries to the oracle O� and total complexity O(nq) to find all the indices. The
relation in (P,�) between any pair of elements can then be looked up in constant
time.

7. Future directions. One of the most interesting issues brought forward but
left unresolved by this work is the precise total complexity of sorting, as it is not
at all clear whether optimal query complexity may be achieved efficiently. One av-
enue we have contemplated is the use of approximate-counting techniques, similar to
those described in Dyer, Frieze, and Kannan [8], to create an efficient version of the
EntropySort algorithm. Related open problems include finding the precise query
complexity and total complexity of k-selection and of sorting when a bound on the
width is not known in advance.

We are also intrigued by the possibility of other problems related to partial orders
that parallel classical theory, including the design of efficient static and dynamic
data structures analogous to heaps and binary search trees. Exploration through the
application of the algorithms in this paper to practical settings may be a good means
of spurring ideas for future work.

Acknowledgments. We thank Mike Saks for the reference to the related work
by Faigle and Turán [9]. We also thank the referees for helpful comments.

REFERENCES

[1] P. Boldi, F. Chierichetti, and S. Vigna, Pictures from Mongolia—partial sorting in a partial
world, in Proceedings of FUN, 2007, pp. 66–77.

[2] G. Brightwell, Balanced pairs in partial orders, Discrete Math., 201 (1999), pp. 25–52.
[3] G. Brightwell and S. Goodall, The number of partial orders of fixed width, Order, 20

(2003), pp. 333–345.
[4] G. Brightwell and P. Winkler, Counting linear extensions is #P-Complete, in Proceedings

of the 23rd Annual ACM Symposium on Theory of Computing, 1991, pp. 175–181.
[5] G. R. Brightwell, S. Felsner, and W. T. Trotter, Balancing pairs and the cross product

conjecture, Order, 12 (1995), pp. 327–349.
[6] Y. Chen, Decomposing DAGs into Disjoint Chains, Lecture Notes in Comput. Sci. 4653,

Springer, Berlin, 2007.
[7] T. M. Cover and J. A. Thomas, Elements of Information Theory, John Wiley & Sons, New

York, 1991.
[8] M. E. Dyer, A. M. Frieze, and R. Kannan, A random polynomial time algorithm for ap-

proximating the volume of convex bodies, J. Assoc. Comput. Mach., 38 (1991), pp. 1–17.
[9] U. Faigle and Gy. Turán, Sorting and recognition problems for ordered sets, SIAM J. Com-

put., 17 (1988), pp. 100–113.

D
ow

nl
oa

de
d

07
/2

7/
16

 to
 1

30
.9

1.
11

8.
71

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

622 DASKALAKIS, KARP, MOSSEL, RIESENFELD, AND VERBIN

[10] L. R. Ford, Jr., and D. R. Fulkerson, Flows in Networks, Princeton University Press,
Princeton, NJ, 1962.

[11] M. Fredman, How good is the information theory bound in sorting?, Theoret. Comput. Sci.,
1 (1976), pp. 355–361.

[12] F. Fussenegger and H. N. Gabow, A counting approach to lower bounds for selection prob-
lems, J. Assoc. Comput. Mach., 26 (1979), pp. 227–238.

[13] J. Kahn and J. H. Kim, Entropy and sorting, in Proceedings of the 24th Annual ACM Sym-
posium on Theory of Computing, 1992, pp. 178–187.

[14] J. Kahn and M. Saks, Balancing poset extensions, Order, 1 (1984), pp. 113–126.
[15] D. Knuth, The Art of Computer Programming: Sorting and Searching, Addison–Wesley, Read-

ing, MA, 1998.
[16] N. Linial, The information-theoretic bound is good for merging, SIAM J. Comput., 13 (1984),

pp. 795–801.
[17] M. E. J. Newman, SIAM Rev., 45 (2003), pp. 167–256.
[18] K. Onak and P. Parys, Generalization of binary search: Searching in trees and forest-like

partial orders, in Proceedings of the 47th Annual IEEE Symposium on Foundations of
Computer Science, 2006, pp. 379–388.

D
ow

nl
oa

de
d

07
/2

7/
16

 to
 1

30
.9

1.
11

8.
71

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

	University of Pennsylvania
	ScholarlyCommons
	2011

	Sorting and Selection in Posets
	Constantinos Daskalakis
	Richard M. Karp
	Elchanan Mossel
	Samantha J. Riesenfeld
	Elad Verbin
	Recommended Citation

	Sorting and Selection in Posets
	Abstract
	Keywords
	Disciplines

	Sorting and Selection in Posets

