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Abstract
Gibbs measures induced by random factor graphs play a prominent role in computer science,
combinatorics and physics. A key problem is to calculate the typical value of the partition
function. According to the “replica symmetric cavity method”, a heuristic that rests on non-
rigorous considerations from statistical mechanics, in many cases this problem can be tackled by
way of maximising a functional called the “Bethe free energy”. In this paper we prove that the
Bethe free energy upper-bounds the partition function in a broad class of models. Additionally,
we provide a sufficient condition for this upper bound to be tight.
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1 Introduction

Many problems in combinatorics, computer science and physics can be cast along the following
lines [2, 23]. There are a (large) number of variables, each of them ranging over a finite
domain Ω. The variables interact through constraints that each bind a few variables. Every
constraint comes with a “weight function” that either encourages or discourages certain value
combinations of the incident variables. The interactions can be described naturally by a
factor graph, whose vertices are the variables and the constraints. A constraint is adjacent
to the variables that it binds. The weight of an assignment σ that maps each variable to a
value from Ω is the product of all the weights of the constraints. The obvious questions is:
how many assignments of a specific total weight exist?

In this paper we are concerned with models where the factor graph is random. An
excellent example is the random k-SAT model: there are n Boolean variables x1, . . . , xn and
m clauses a1, . . . , am. Each clause binds k variables, which are chosen independently and
uniformly from x1, . . . , xn, and discourages them from taking one of the 2k possible value
combinations. This value combination is chosen uniformly and independently for each clause.
The key quantity associated with the random k-SAT instance Φ is its partition function,
defined as

Zβ,Φ =
∑

σ∈{0,1}n

m∏
i=1

exp(−β1 {σ violates ai}) (β > 0). (1)
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In words, we sum the weights of all 2n possible truth assignments σ. Each σ incurs a “penalty
factor” of exp(−β) for every violated clause. It is not difficult to see that the random variable
Zβ,Φ incorporates key characteristics of the model. For instance, the maximum number of
clauses that can be satisfied simultaneously equals

m+ lim
β→∞

∂

∂β
lnZβ,Φ.

Apart from random k-SAT, there are a host of other models of a similar nature. Prominent
examples include the random graph colouring problem, LDPC codes or the so-called “mean-
field” models of statistical mechanics [23].

Over the past decade the second moment method has emerged as the principal tool for
the analysis of such models [1, 2, 15]. Its “vanilla” version works as follows. If the partition
function Z of the model satisfies the bound E[Z2] ≤ O(E[Z]2) in the limit as the number n
of variables tends to infinity, then n−1 ln(Z/E[Z]) converges to 0 in probability. Since E[Z] is
normally easy to compute, we thus obtain the exponential order of Z. In fact, by calculating
E[Z2]/E[Z]2 accurately enough it is sometimes possible to infer the limiting distribution of
Z [20].

However, in many examples the use of the second moment method is precluded by large
deviations phenomena. The random k-SAT model with m = dαne clauses is a case in point
as n−1 ln(Zβ,Φ/E[Zβ,Φ]) does not converge to 0 as n→∞ for any α, β > 0. The reason is
that the first moment E[Zβ,Φ] is driven up by a “lottery effect”: there are a tiny minority
of formulas with an abundance of “good” assignments [1, 3, 4]. Of course, this implies that
E[Z2

β,Φ] ≥ exp(Ω(n))E[Zβ,Φ]2. Thus, the second moment method fails rather spectacularly.
The obvious remedy is to condition such lottery effects away. That is, we ought to

condition on an event U that pins down those parameters of the model whose large deviations
drive E[Z] up. But even if we manage to identify the relevant parameters, the necessary
conditioning on U may be so complicated as to render a second moment computation at
best unpleasant and at worst infeasible. Indeed, the recent history of the random k-SAT
problem illustrates how conditioning turns a second moment computation into a formidable
task [7, 12].

A completely different but non-rigorous method for calculating Z, the replica symmetric
cavity method, has been suggested on the basis of ideas from statistical physics [23]. According
to the cavity method, under certain assumptions the asymptotic value of n−1 lnZ can be
calculated by maximising a functional called the Bethe free energy. Furthermore, the physics
recipe for solving this maximisation problem is to iterate a message passing algorithm called
Belief Propagation on the factor graph until convergence. This recipe is somewhat plausible
due to the (rigorous) fact that the stationary points of the Bethe free energy are in one-to-one
correspondence with the Belief Propagation fixed points [32]. However, in general there are
several fixed points and non-trivial insights are necessary to steer Belief Propagation toward
the “correct” one. Even worse, in general the maximum value of the Bethe free energy may
or may not approximate n−1 lnZ well.1

The purpose of this paper is to provide a rigorous foundation for the idea of using Belief
Propagation to calculate the free energy. We establish two main results. First, that under
mild assumptions the maximum of the Bethe free energy provides an upper bound on the
typical value of n−1 lnZ on a random factor graph (Theorem 3). The proof of this is based

1 The quantity n−1 ln Z is called the free energy of the factor graph. We do not use this term to avoid
confusion with the Bethe free energy.
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on a physics-enhanced version of the classical “first moment method”. Along the way we
derive several general results on Gibbs distributions that should be of independent interest
(e.g., Theorem 6). Second, we propose a corresponding refined “second moment method”
(Theorem 14). More specifically, we prove that if the maximum of the Bethe free energy on
a certain auxiliary model is upper-bounded by a term that corresponds to the square of the
first moment and if certain additional (reasonable) assumptions hold, then the free energy
converges in probability to the value predicted by the cavity method.

2 Related work

Belief Propagation has been re-discovered several times in varying degrees of generality [5,
17, 29]. On finite acyclic factor graphs Belief Propagation has a unique fixed point and the
corresponding Bethe free energy equals n−1 lnZ. (e.g., [23, Chapter 14]). To what extent
this is true in the presence of cycles is a long-standing problem.

The results of the present paper are most relevant in cases where the local structure of the
factor graph is not perfectly “uniform”. For instance, we are going to be interested in the case
that different variable nodes may have different degrees. More subtly, different variable nodes
may have different marginals under the Gibbs distribution that the factor graph induces, see
(3) below. The case of uniform models is conceptually simpler and has been treated before [9].
In fact, in the uniform case the computation of n−1 lnZ can essentially be transformed into
the problem of maximising the Bethe free energy of a “tensorised” model on the d-regular
tree [9, 13, 11]. This fact has played a key role in recent work on the hardness of counting
problems [16, 26, 30]. Although we use a similar tensor construction in our second moment
argument as well (cf. Proposition 13), non-uniformity makes matters far more intricate, as
witnessed by recent work on random k-SAT [7, 12]. Thus, the main point of the present
work is to establish a connection between the Bethe free energy and |V |−1 lnZ even in the
non-uniform case.

That said, if the model enjoys certain spatial mixing properties (such as “Gibbs unique-
ness”), then the Bethe free energy is known to yield the correct value of n−1 lnZ even in
the non-uniform case [10, 25]. However, the necessary spatial mixing properties are quite
strong and they cease to be satisfied, e.g., in the random k-SAT model from (1) for large β
for clause/variable ratios as low as about ln k/k [25]. By comparison, the k-SAT threshold is
about 2k ln 2 [12].

The “interpolation method” provides a different approach to calculating or at least upper-
bounding n−1 lnZ [14, 19]. In particular, the upper bound comes in a variational form [28].
For example, this can be used to obtain a tight upper bound on the k-SAT threshold [12].
Generally speaking, the interpolation method is great if it works, but it comes with certain
(convexity-type) assumptions that are not always satisfied. Furthermore, it seems difficult to
use the interpolation method directly to carry out a second moment argument in order to
lower-bound the partition function. By contrast, Theorems 3 and 14 do not require such
assumptions.

The physicists’ cavity method comes in several instalments; for a detailed discussion we
refer to [23]. In this paper we are chiefly concerned with the simplest, “replica symmetric”
variant. This version does not always provide the correct value of n−1 lnZ [8]. It seems that
one reason for this is that models such as random k-SAT undergo a so-called “condensation
phase transition” [21]. The more complex “1-step replica symmetry breaking (1RSB)” version
of the cavity method [24] is expected to yield the correct value of n−1 lnZ some way beyond
condensation. However, another phase transition called full replica symmetry breaking seems

APPROX/RANDOM’15



470 Harnessing the Bethe Free Energy

to spell doom on even the 1RSB cavity method (see [23] for details). In summary, we do not
hope for an unconditional result that vindicates either the replica symmetric or the 1RSB
version of the cavity method.

3 Random factor graphs

In this section we explain the class of models that we deal with. Throughout, ∆ > 0 is an
integer, Ω,Θ are finite sets and Ψ = {ψ1, . . . , ψl} is a finite set of maps ψi : Ωhi → (0,∞),
where 1 ≤ hi ≤ ∆. The following abstract definition encompasses a multitude of concrete
examples.

I Definition 1. A (∆,Ω,Ψ,Θ)-model M = (V, F, d, t, ψ) consists of
M1 a countable set V of variable nodes,
M2 a countable set F of constraint nodes,
M3 a map d : V ∪ F → [∆] such that

∑
x∈V d(x) =

∑
a∈F d(a),

M4 a map t : CV ∪ CF → Θ, where we let

CV =
⋃
x∈V
{x} × [d(x)], CF =

⋃
a∈F
{a} × [d(a)],

such that
∣∣t−1(θ) ∩ CV

∣∣ =
∣∣t−1(θ) ∩ CF

∣∣ for each θ ∈ Θ,
M5 a map F → Ψ, a 7→ ψa such that ψa : Ωd(a) → (0,∞) for all a ∈ F .
The size of the model is defined as #M = |V |. Furthermore, a M-factor graph is a
bijection

G : CV → CF , (x, i) 7→ Gx,i such that t(Gx,i) = t(x, i) for all (x, i) ∈ CV .

Of course, the equalities in M3 and M4 require that either both quantities are infinite
or both are finite, in which case they have to coincide.

The semantics is that the map d prescribes the degree of each variable and constraint
node (i.e., their number of neighbours in anyM-factor graph). Just like in the “configuration
model” of graphs with a given degree sequence we create d(v) “clones” of each node v. The
sets CV , CF contain the clones of the variable and constraint nodes, respectively. Additionally,
the map t assigns each clone a “type” from the set Θ. Moreover, each constraint node a
comes with a “weight function” ψa from the set Ψ.

Like in the “configuration model” a M-factor graph is a type-preserving matching G
of the variable and constraint clones. Let G(M) be the set of allM-factor graphs and let
G(M) denote a uniformly random sample from G(M). We usually think of G ∈ G(M) as
the (multi-)graph obtained by contracting the clones of each node. Clearly, this yields a
bipartite graph with |V | variable nodes and |F | constraint nodes. For a node x ∈ V we
denote by ∂Gx the set of neighbours of x in this multi-graph, i.e., the set of all a ∈ F such
that there exist i ∈ [d(x)], j ∈ [d(a)] such that Gx,i = (a, j). Analogously, for a ∈ F and
j ∈ [d(a)] we write ∂G(a, j) = x if there is i ∈ [d(x)] such that Gx,i = (a, j). Moreover,
∂Ga = {∂G(a, j) : j ∈ [d(a)]}. Finally, we denote the inverse image of a clone (a, j) ∈ CF
under the bijection G simply by Ga,j .

AM-assignment is a map σ : V → Ω. Let CM be the set of allM-assignments. Further,
define the partition function of G ∈ G(M) as

ZG =
∑
σ∈CM

∏
a∈F

ψa
(
σ(∂G(a, 1)), . . . , σ(∂G(a, d(a)))

)
. (2)
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It is closely intertwined with the Gibbs distribution of G, which is the distribution on CM
defined by

µG(σ) = Z−1
G

∏
a∈F

ψa
(
σ(∂G(a, 1)), . . . , σ(∂G(a, d(a)))

)
. (3)

Our key object of study is the random variable |V |−1 lnZG(M).

I Example 2 (The random k-SAT model). Let Ω = {0, 1}. Given some β ≥ 0 let Ψ contain
the 2k weight functions

ψ(τ) : Ωk → (0,∞), σ 7→ exp(−β1{σ = τ}) for τ ∈ Ωk.

Let ∆ > 0 be a positive integer and let Θ = {?}. We obtain a (∆,Ω,Ψ,Θ)-modelMSAT by
letting V = {x1, . . . , xn} and F = {a1, . . . , am}. Pick any degree sequence d : V → [∆] such
that

∑
x∈V d(x) = km and let d(a) = k for all a ∈ F . Further, pick some ψa ∈ Ψ for each

a ∈ F , thereby prescribing a “sign pattern” for each “clause” a. Finally, let t : CV ∪CF → Θ
be the trivial (constant) map. Then G(MSAT ) corresponds to choosing a random k-SAT
formula with the given degree sequence and sign patterns. Moreover, n−1 lnZG(MSAT )
accounts for weighted truth assignments (cf. (1)) [18].

In Example 2 we did not actually use the types in a non-trivial way. They could be used
to prescribe not merely the degree of each variable but also how many times each Boolean
variable appears positively or negatively.

While Definition 1 encompasses a many problems of interest, there are two restrictions.
They arise because we are going to be interested in sequences (Mn)n of (∆,Ω,Ψ,Θ)-models of
sizes #Mn = n. That is, the size of the model tends to infinity while ∆,Ω,Ψ,Θ remain fixed.
In effect, the maximum degree remains bounded as n→∞. This is not quite the case in, e.g.,
the “standard” random k-SAT model where clauses are chosen uniformly and independently
and where consequently the variable degrees are asymptotically Poisson. However, in such
examples the free energy can by means of standards arguments be approximated arbitrarily
well by truncating the degrees at a large enough ∆.

The second restriction is that the weight functions ψ ∈ Ψ are assumed to be strictly
positive. This condition precludes hard constraints such as “no single clause must be violated”.
Although most of our proofs extend to the case of hard constraints, we chose to exclude them
from the general statement of the results for the sake of clarity. For instance, the positivity
assumption ensures that ZG > 0 for all G ∈ G(Mn) and hence that the random variable
n−1 lnZG(Mn) has a finite mean. Furthermore, the case of hard constraints can be handled
by introducing an “inverse temperature” parameter β > 0 like in Example 2 and ultimately
taking the limit β →∞ (cf. [25]), although some additional work is needed.

In Section 4 we will prove that the “Bethe free energy” provides an upper bound on
|V |−1 lnZG(M). Further, in Section 5 we are going to provide a sufficient condition under
which this upper bound is asymptotically tight.

Preliminaries
Throughout the paper we always let ∆ ≥ 1 be an integer, Ω,Θ finite sets, and Ψ a finite set
of functions as in Definition 1. We let #ψ be the arity of ψ ∈ Ψ, i.e., ψ : Ω#ψ → (0,∞).

For a finite set X 6= ∅ we denote by P(X ) the set of probability measures on X , which
we identify with the |X |-simplex. For µ ∈ P(X ) we denote by H(µ) = −

∑
x∈X µ(x) lnµ(x)

APPROX/RANDOM’15



472 Harnessing the Bethe Free Energy

the entropy of µ (with the convention 0 ln 0 = 0). Further, if µ, ν : X → [0,∞) are such that
ν(x) > 0 only if µ(x) > 0, then

D(ν‖µ) =
∑
x∈X

ν(x) ln(ν(x)/µ(x))

signifies the Kullback-Leibler divergence. Moreover, for integers k > 0, j ∈ [k] and µ ∈ P(X k)
we let µ↓j ∈ P(X ) be the marginal of the jth component.

For µ ∈ P(X ) we write σµ for an random element of X chosen according to µ. Where µ
is apparent from the context we drop the index. Further, if X : X → R is a random variable
we write 〈X〉µ =

∑
σ∈X X(σ)µ(σ) for the expectation of X with respect to µ. For the sake

of brevity we normally write 〈 · 〉G instead of 〈 · 〉µG for G ∈ G(M).
Further, if S is a subset of the set V of variable nodes ofM, σ : V → Ω and ω ∈ Ω we

write
σ[ω|S] = 1

|S|
∑
x∈S

1 {σ(x) = ω} .

Thus, σ[ · |S] ∈ P(Ω) is the empirical distribution of σ on S. Analogously, if G ∈ G(M) is a
factor graph and A 6= ∅ is a set of factor nodes such that all a ∈ A have degree d(a) = l for
some l > 0, then we let

σ[ω1, . . . , ωl|A] = 1
|A|

∑
a∈A

l∏
j=1

1 {σ(∂G(a, j)) = ωj} .

Thus, σ[ · |A] ∈ P(Ωl) is the joint empirical distribution of the value combinations induced
by σ on a ∈ A.

4 The upper bound

LetM = (V, F, d, t, (ψa)a∈F ) be a (∆,Ω,Ψ,Θ)-model of finite size n = |V |. Let G = G(M)
for brevity.

4.1 The Bethe free energy
The aim in this section is to show that the “Bethe free energy”, a concept that hails from the
cavity method, provides an upper bound on the partition function. To formulate the result
we need the following definition [23, Chapter 14]. Let G ∈ G(M). A marginal sequence
of G is a family ν = (νx, νa)x∈V,a∈F such that νx ∈ P(Ω) for each x ∈ V , νa ∈ P(Ωd(a)) for
each a ∈ F and if Gx,i = (a, j) entails that νx = νa↓j . Thus, if a variable x occurs in the jth
position of a constraint a, then the jth marginal of νa coincides with νx. The Bethe free
energy2 of (G, ν) is

BM(G, ν) = − 1
n

[∑
a∈F

D (νa‖ψa) +
∑
x∈V

(d(x)− 1)H(νx)
]
.

Additionally, the Bethe free energy of G is

BM(G) = max {BM(G, ν) : ν is a marginal sequence of G} .

2 For a detailed derivation of the Bethe free energy in the context of the cavity method see [23, Chapter 14].
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I Theorem 3. For any ∆,Ω,Ψ,Θ and any ε > 0 there exists n0 > 0 such that the following
is true. Suppose that M is a finite (∆,Ω,Ψ,Θ)-model of size n > n0. Moreover, let
∅ 6= U ⊂ G(M) be an event. Then

n−1 lnE[ZG1{G ∈ U}] ≤ max {BM(G) : G ∈ U}+ ε.

Thus, there exists a number n0 that depends only on the basic parameters ∆,Ω,Ψ,Θ
and the desired accuracy ε such that for any model of size n ≥ n0 the Bethe free upper
bounds on the expectation of ZG on U . The following corollary provides a handy way to
apply Theorem 3.

I Corollary 4. Let (Mn)n be a sequence of (∆,Ω,Ψ,Θ)-models such that #Mn = n. Assume
that b > 0 is such that the event Un = {BMn

(G(Mn)) ≤ b} satisfies limn→∞ P [Un] = 1.
Then

lim sup
n→∞

n−1 lnE
[
ZG(Mn)|Un

]
≤ b.

By Markov’s and Jensen’s inequalities, the bound lim supn→∞ n−1 lnE
[
ZG(Mn)|Un

]
≤ b

entails that
lim
ε↘0

lim
n→∞

P
[
n−1 lnZG(Mn) ≤ b+ ε

]
= 1.

In other words, if the Bethe free energy is bounded by b with high probability, then
n−1 lnZG(Mn) ≤ b+ o(1) with high probability.

The proof of Theorem 3 contains several concepts that we deem to be of independent
interest. The most important one is that of a “state”. More specifically, we prove Theorem 3 by
showing that the lion’s share of E[ZG1{G ∈ U}] comes from a set Γ of factor graph/assignment
pairs (G, σ) such that certain key parameters of all pairs (G, σ) ∈ Γ approximately coincide.
For instance, for (almost) any ψ and value combination ω = (ω1, . . . , ω#ψ), about the same
number of constraint nodes a with ψa = ψ display the value combination ω. Theorem 3
will follow because the contribution of any single state s to E[ZG1{G ∈ U}] can be cast as
the Bethe free energy of a marginal sequence induced by s. We proceed with the precise
definition of states.

4.2 States
For an integer N ≥ 1 we write

Ψ[N ] = {(ψ, h1, . . . , h#ψ) : h1, . . . , h#ψ ∈ [N ]} .

I Definition 5. AM-state of size N ≥ 1 consists of
ST1 a map s : V → [N ] such that s(x) = s(y) only if d(x) = d(y) and t(x, i) = t(y, i) for all

i ∈ d(x),
ST2 a probability distribution s̄ = (s̄ψ,h)ψ,h on Ψ [N ],
ST3 a set ŝ ⊂ Ψ[N ],
ST4 a sequence (s̃h)h∈[N ] of probability distributions on Ω,
ST5 for any (ψ, h) ∈ Ψ [N ] a distribution s̃ψ,h ∈ P(Ω#ψ) such that s̃ψ,h↓j = s̃hj for all

j ∈ [#ψ].

Normally we denote anM-state simply by s and we write #s for its size. Moreover, let

V sh = s−1(h) for h ∈ [#s], V sψ,h =
∏

j∈[#ψ]

V shj for (ψ, h) ∈ Ψ [N ] .

APPROX/RANDOM’15
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In addition, if G ∈ G(M) and (ψ, h) ∈ Ψ [N ] we let

∂G,s(ψ, h) =
{
a ∈ F : ψa = ψ, ∂G(a) ∈ V sψ,h

}
.

Thus, a state induces a partition V s1 , . . . , V
s
N of the set of variable nodes. Condition

ST1 ensures that this partition respects the degrees and the types. Let us call G ∈ G(M)
ε-compatible with s for some ε > 0 (“G |=ε s”) if∑

(ψ,h)∈Ψ[N ]

∣∣∣∣ |∂G,s(ψ, h)|
|F |

− s̄ψ,h
∣∣∣∣ < ε,

∑
(ψ,h)∈Ψ[N ]

1 {(ψ, h) ∈ ŝ} s̄ψ,h < ε.

Thus, for any (ψ, h) there are about s̄ψ,h|F | constraint nodes a with ψa = ψ that join variable
nodes from the classes V sh1

, . . . , V sh#ψ
. And no more than an ε fraction of all constraint nodes

belong to the “rogue classes” (ψ, h) ∈ ŝ.
Further, suppose that G |=ε s and σ ∈ CM. We say that (G, σ) is ε-judicious with

respect to s (in symbols: (G, σ) |=ε s) if
J1 for all h ∈ [N ] we have ‖s̃h − σ[ · |V sh ]‖TV < ε,
J2 for all (ψ, h) ∈ Ψ [N ] \ ŝ such that ∂G,s(ψ, h) 6= ∅ we have ‖s̃ψ,h − σ[ · |∂G,s(ψ, h)]‖TV < ε.
Hence, the empirical distributions σ[ · |V sh ] do not deviate by more than ε from s̃h. Similarly,
for a “non-rogue” (ψ, h) the empirical distribution σ[ · |∂G,s(ψ, h)] of the ψ-factors that
connect variables in V sψ,h is within ε of s̃ψ,h. The following theorem provides the key fact
about states. It should be of interest in its own right.

I Theorem 6. For any ∆,Ω,Ψ,Θ and any ε > 0 there exists η > 0 such that the following
is true. LetM be a finite (∆,Ω,Ψ,Θ)-model of size #M≥ 1/η and let G ∈ G(M). Then
there exists aM-state s of size #s ≤ 1/η such that G |=ε s and 〈1 {(G,σ) |=ε s}〉G ≥ η.

Crucially, the number η promised by Theorem 6 depends on ε and the basic parameters
∆,Ω,Ψ,Θ only. It is independent of the model and its size. Hence, for any large enoughM
and any G ∈ G(M) there is a single “dominant state” s that captures a constant fraction of
the mass of the Gibbs distribution µG.

Theorem 6 sits well with the replica symmetry breaking picture drafted by the cavity
method. According to this prediction, there are three possible shapes that the Gibbs
distribution can take. Roughly speaking, in the case of replica symmetry the joint distribution
of any two variable nodes that are far apart (say, at distance at least ln lnn) in the factor
graph is close to a product distribution. The state corresponding to this scenario simply
partitions the variable nodes according to their Gibbs marginals. In the second scenario,
called 1-step replica symmetry breaking, the Gibbs distribution is mixture of a bounded
number of distributions, i.e.,∥∥∥∥∥µG −

K∑
i=1

wiµG,i

∥∥∥∥∥
TV

< ε where (w1, . . . , wK) ∈ P([K]), µG,1, . . . , µG,K ∈ P(CM).

Each µG,i corresponds to a “cluster” of assignments and is such that the joint distribution of
far apart variables factorises. In this case, we obtain a state by partitioning the variables
according to their µG,i-marginals for some i with wi ≥ η. In the third case, called full replica
symmetry breaking, the µG,i themselves are mixtures of distributions µG,i,j . Further, each
of the µG,i,j decomposes into clusters etc., yielding an infinite cascade. A dominant state
would truncate the cascade after a finite number of steps (depending on ε) and home in on
one of the sub-clusters.

The key concept behind the proof of Theorem 6 is the following.
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I Definition 7. Let Ω be a finite set, let ε > 0, let n be an integer and let µ be a probability
measure on Ωn. A partition V = (V1, . . . , VN ) of [n] is called ε-homogeneous with respect
to µ if there is a set J ⊂ [N ] such that

∑
i∈[N ]\J |Vi| < εn and such that for all j ∈ J the

following is true.

For any subset S ⊂ Vj of size |S| ≥ ε|Vj | we have
〈
‖σ[ · |S]− σ[ · |Vj ]‖TV

〉
µ
< ε.

If V = (V1, . . . , Vk), then we call #V = k the size of V . Furthermore, a partition
W = (W1, . . . ,Wl) refines another partition V = (V1, . . . , Vk) if for each i ∈ [l] there is
j ∈ [k] such that Wi ⊂ Vj . The proof of Theorem 6 builds upon

I Theorem 8. Let Ω be a finite set. For any ε > 0 there exists N = N(ε,Ω) such that for
n > N and any probability measure µ on Ωn the following is true. Let V 0 be a partition of [n]
such that #V 0 ≤ 1/ε. Then V 0 has a refinement V of size #V ≤ N that is ε-homogeneous
with respect to µ.

Theorem 8 and its proof are inspired by the proof of Szemerédi’s regularity lemma [31].
Theorem 6 produces a “dominant state” for each individual factor graph. In combina-

tion with a compactness argument this entails that a single state suffices to approximate
1
n lnE[ZG1{G ∈ U}] for a given event U .

I Corollary 9. For any ε > 0 and any ∆,Ω,Ψ,Θ there exist γ > 0, n0 > 0 such that the
following is true. Suppose thatM is a finite (∆,Ω,Ψ,Θ)-model of size #M≥ n0 and that
∅ 6= U ⊂ G(M). Then there exist aM-state s and G0 ∈ U such that G0 |=γ s and

n−1 lnE[ZG1{G ∈ U}] ≤ ε+ n−1 lnE
[
ZG 〈(G,σ) |=γ s〉G

∣∣G |=γ s
]
.

Finally, it is not difficult to derive Theorem 3. Indeed,

n−1 lnE
[
ZG 〈(G,σ) |=γ s〉G

∣∣G |=γ s
]

can be cast as the Bethe free energy of the marginal sequence induced by s: let νx = s̃s(x)
for x ∈ V and νa = s̃ψ,h for all a ∈ ∂G0,s(ψ, h). But how we can get a handle on the Bethe
free energy BM(G)?

4.3 Belief Propagation
The Bethe free energy of a given factor graph G can be calculated by analysing the Belief
Propagation message passing algorithm. Belief Propagation can be viewed as an operator
acting on the message space MesM(G) of G, which we define as the set of all maps
ν̂ : CV ∪ CF → P(Ω), (v, j) 7→ ν̂v,j . The Belief Propagation operator BP : MesM(G)→
MesM(G) maps ν̂ ∈ MesM(G) to ν̃ = BP(ν̂) defined by3

ν̃x,i(ωi) ∝
∏

h∈[d(x)]\{i}

ν̂Gx,h(ωi) (4)

for (x, i) ∈ CV , ωi ∈ Ω and

ν̃a,j(ωj) ∝
∑

(ωh)h∈[d(a)]\{j}

ψa(ω1, . . . , ωd(a))
∏

h∈[d(a)]\{j}

ν̂Ga,h(ωh) (5)

3 As per common practice, we use the ∝ symbol to define probability distributions on a finite set X as
follows. If f : X → [0, ∞), then p ∝ f means that p(ω) = f(ω)/

∑
x∈X f(x) unless

∑
x∈X f(x) = 0, in

which case p is the uniform distribution.
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for (a, j) ∈ CF , ω1, . . . , ωd(a) ∈ Ω. Let FixM(G) be the set of all Belief Propagation fixed
points, i.e., all ν̂ ∈ MesM(G) such that BP(ν̂) = ν̂. Any point ν̂ ∈ FixM(G) gives rise to a
marginal sequence, namely

ˆ̂νx(ω) ∝
∏

h∈[d(x)]

ν̂Gx,h(ω) (6)

for x ∈ V, ω ∈ Ω and

ˆ̂νa(ω1, . . . , ωd(a)) ∝ ψa(ω1, . . . , ωd(a))
∏

h∈[d(a)]

ν̂Ga,h(ωh) (7)

for a ∈ F, ω1, . . . , ωd(a) ∈ Ω.

I Proposition 10. We have BM(G) = max
{
BM(G, ˆ̂ν) : ν̂ ∈ FixM(G)

}
.

Proof. The set M of marginal sequences is compact. Because the functions ψ ∈ Ψ are
strictly positive and as the derivative of the entropy diverges as ν approaches the boundary
∂M , BM(G, · ) does not attain its global maximum on ∂M . Furthermore, for any stationary
point ν ∈ M of the Bethe free energy BM(G, · ) there exists ν̂ ∈ FixM(G) such that
BM(G, ν) = BM(G, ˆ̂ν) [23, Proposition 14.6]. J

Theorem 3 shows that the Bethe free energy provides an upper bound on n−1 lnZG(M).
Furthermore, Proposition 10 reduces the problem of calculating the Bethe free energy to
the task of determining the “dominant fixed point” of Belief Propagation, i.e., the task of
analysing an algorithm on a random graph.

5 The lower bound

In this section we consider a sequence (M(n) = (Vn, Fn, dn, tn, (ψn,a))n of (∆,Ω,Ψ,Θ)-
models such that #M(n) = n. Let G(n) = G(M(n)) and G(n) = G(M(n)).

5.1 A Bethe-enhanced second moment method
The cavity method provides a “recipe” for calculating a number φ such that (n−1 lnZG(n))n
is deemed to converge to φ in probability. This number is determined by applying Belief
Propagation and the Bethe free energy to the “limit” of the typical local structure of G(n) as
n→∞. The aim in this section is to develop a version of the second moment method that
allows us to prove such a claim rigorously. But first we need to formalise the “limiting local
structure”. To this end we adapt the concept of local weak convergence of graph sequences [22,
Part 4] to our current setup, which can be viewed as a generalisation of the one from [10].

I Definition 11. A (∆,Ω,Θ,Ψ)-template consists of a (∆,Ω,Ψ,Θ)-modelM, a connected
factor graph H ∈ G(M) and a root (rH , iH), which is a variable or factor clone. We denote
the template by H. Its size is #H = #M.

Two templates H,H ′ with modelsM = (V, F, d, t, (ψa), σ∗),M′ = (V ′, F ′, d′, t′, (ψ′a), σ′∗)
are isomorphic if there exists a bijection π : V ∪ F → V ′ ∪ F ′ such that the following
conditions are satisfied.
ISM1 π(x) ∈ V ′ for all x ∈ V and π(a) ∈ F ′ for all a ∈ F ,
ISM2 if rH = (xH , iH) and rH′ = (xH′ , iH′), then π(xH) = xH′ and iH = iH′ ,
ISM3 d(v) = d′(π(v)), σ∗(v) = σ′∗(π(v)) for all v ∈ V ∪ F and t(v, i) = t′(π(v, i)) for all

(v, i) ∈ CV ∪ CF ,
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ISM4 ψa = ψπ(a) for all a ∈ F ,
ISM5 for all (v, i) ∈ CV we have Hv,i = (a, j) iff H ′π(v),i = (π(a), j).
We denote the isomorphism class of a template H by [H]. Let G = G(∆,Ω,Θ,Ψ) be the
set of all isomorphism classes. Further, let T ⊂ G be the set of all isomorphism classes
of acyclic templates. For each [H] ∈ G and ` ≥ 1 let ∂`[H] be the isomorphism class of
the template obtained by removing all vertices at a distance greater than ` from the root
if the root is a variable clone and ` + 1 if the root is a factor node. We endow G with
the coarsest topology that makes all the functions Γ ∈ G 7→ 1{∂`[Γ] = ∂`[Γ0]} ∈ {0, 1} for
` ≥ 1,Γ0 ∈ G continuous. Moreover, the space P(G) of probability measures on G carries
the weak topology. So does the space P2(G) of probability measures on P(G). For Γ ∈ G

and λ ∈ P(G) we write δΓ ∈ P(G) and δλ ∈ P2(G) for the Dirac measure that puts mass
one on Γ resp. λ.

For a factor graph G ∈ G(n) and a clone (v, i) we write [G, v, i] for the isomorphism class
of the connected component of (v, i) in G rooted at (v, i). Each G ∈ G(n) gives rise to the
empirical distribution

λG = 1
|CVn |+ |CFn |

∑
(v,i)∈CVn∪CFn

δ[G,v,i] ∈ P(G).

Let Λn = E[δλG(n) ] ∈ P2(G). We say that (M(n))n converges locally to ϑ ∈ P(T) if
limn→∞ Λn = δϑ.

Additionally, to exclude some pathological cases we need the following assumption. Let
us call a factor graph G `-acyclic if it does not contain a cycle of length at most `. We say
that the sequence (M(n))n of models has high girth if for any ` > 0 we have

lim inf
n→∞

P [G(n) is `-acyclic] > 0.

The key prediction of the “replica symmetric cavity method” can be cast as follows:
(n−1 lnZG(n))n converges in probability to the Bethe free energy of a “Belief Propagation
fixed point” on the (possibly infinite) trees in the support of ϑ [23]. To formalise this, let
T ϑ ∈ T be a sample from ϑ ∈ P(T). Further, let V be the event that the root of T ϑ is a
variable clone and let F be the event that the root is a constraint clone. For T ∈ T let dT
denote the degree of the root of T . Moreover, for j ∈ [dT ] let T ↑ j ∈ T denote the tree
pending on the jth child of the root of T . Finally, if the root is the clone of a constraint
node we let ψT be its associated function.

I Definition 12. A measurable map p : T→ P(Ω), T 7→ pT is called a ϑ-Belief Propaga-
tion fixed point if the following conditions are satisfied ϑ-almost surely.

1. if the root of T is a variable clone (x, i), then

pT (ω) ∝
∏

j∈[dT ]\{i}

pT↑j(ω).

2. if the root of T is a factor clone (a, i) with associated factor ψ ∈ Ψ, then

pT (ωi) ∝
∑

(ωj)j∈[dT ]\{i}

ψ(ω1, . . . , ωdT )
∏

j∈[dT ]\{i}

pT↑j(ωj).
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Further, we need to define the Bethe free energy of a ϑ-Belief Propagation fixed point p.
To this end, we turn p into a map that assigns each tree a “marginal”. More precisely, we let

p̂T (ω) ∝
∏
j∈[dT ]

pT↑j(ω) if T ∈ V, ω ∈ Ω,

p̂T (ω1, . . . , ω#ψT ) ∝ ψT (ω1, . . . , ω#ψT )
∏

j∈[#ψT ]

pT↑j(ωj) if T ∈ F , ω1, . . . , ω#ψT ∈ Ω.

The Bethe free energy of p with respect to ϑ is

Bϑ(p) =
(
E
[
d−1

Tϑ
(1− dTϑ)H(p̂Tϑ)|V

]
− E

[
d−1

Tϑ
D (p̂Tϑ‖ψTϑ(σ)) |F

])
E[dTϑ |V]

Finally, to obtain a sufficient condition for the convergence n−1 lnZG(n) → Bϑ(p) we
are going to apply Theorem 3 to upper-bound the second moment of ZG(n). The necessary
construction, reminscent of those used in [9, 13, 11, 16, 26, 30], is as follows.

I Proposition 13. For any ε > 0 there exists η > 0 such that the following is true. Suppose
thatM is a (∆,Ω,Ψ,Θ)-model of size n = #M≥ 1/η. There exists a finite set of functions
Ψ⊗ and a (∆,Ω× Ω,Ψ⊗,Θ)-modelM⊗ with the following properties.
(i) There is a bijection G(M)→ G(M⊗), G 7→ G⊗.
(ii) Let U ⊂ G(M) be an event such that P [G ∈ U ] > ε. Then

n−1 lnE[Z2
G|U ] ≤ max

{
BM⊗(G⊗) : G ∈ U

}
+ ε.

Proof. Let Ω⊗ = Ω× Ω and denote (ω, ω′) ∈ Ω⊗ by ω ⊗ ω′. For ψ ∈ Ψ let

ψ⊗ : (Ω⊗)#ψ → (0,∞), (ω1 ⊗ ω′1, . . . , ω#ψ ⊗ ω′#ψ) 7→ ψ(ω1, . . . , ω#ψ) · ψ(ω′1, . . . , ω′#ψ).

ThenM⊗ = (V, F, d, t, (ψ⊗a )a∈F ) satisfies the requirements. J

I Theorem 14. Suppose that (M(n))n≥1 has high girth and converges locally to ϑ ∈ P(T).
Furthermore, assume that there is a ϑ-Belief Propagation fixed point p such that for any
ε > 0 we have

lim
n→∞

P
[
BM⊗(n)(G⊗(n)) ≤ 2Bϑ(p) + ε

]
= 1 and (8)

lim
`→∞

lim
n→∞

1
n
E

[
ln

E[ZG(n)1{BM⊗(n)(G⊗(n)) ≤ 2Bϑ(p) + ε}|T`]
E[ZG(n)|T`]

]
= 0. (9)

Then 1
n lnZG(n) converges to Bϑ(p) in probability.

For a given ϑ the construction or, at least, identification of the ϑ-Belief Propagation
fixed point p in Theorem 14 is similar to the computations done in the physics literature.
However, to apply Theorem 14 it will generally be necessary to perform these calculations
more thoroughly, e.g., by means of the contraction method [27]. Further, to verify condition
(8) we need to study the Bethe free energy of the modelsM⊗n , which will typically be done
by way of analysing Belief Propagation on the random factor graph G⊗(n). This task may
be far from trivial, but at least it is a well-defined combinatorial problem.

Finally, (9) provides that given that the local structure up to depth ` is “typical”,
conditioning on the event that the second moment Bethe free energy is bounded by 2Bϑ(p)+ε
does not cause a substantial drop in the first moment. This is a technical condition that
can be verified by studying an auxiliary probability space, namely a variant of the “planted
model” with a given local structure. Technically, this task can be tackled via a generalised
“configuration model” as put forward in [6].
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