486 research outputs found
Equilibrium and out of equilibrium thermodynamics in supercooled liquids and glasses
We review the inherent structure thermodynamical formalism and the
formulation of an equation of state for liquids in equilibrium based on the
(volume) derivatives of the statistical properties of the potential energy
surface. We also show that, under the hypothesis that during aging the system
explores states associated to equilibrium configurations, it is possible to
generalize the proposed equation of state to out-of-equilibrium conditions. The
proposed formulation is based on the introduction of one additional parameter
which, in the chosen thermodynamic formalism, can be chosen as the local minima
where the slowly relaxing out-of-equilibrium liquid is trapped.Comment: 7 pages, 4 eps figure
Effective temperature of active matter
We follow the dynamics of an ensemble of interacting self-propelled motorized
particles in contact with an equilibrated thermal bath. We find that the
fluctuation-dissipation relation allows for the definition of an effective
temperature that is compatible with the results obtained using a tracer
particle as a thermometer. The effective temperature takes a value which is
higher than the temperature of the bath and it is continuously controlled by
the motor intensity
Memory effects in classical and quantum mean-field disordered models
We apply the Kovacs experimental protocol to classical and quantum p-spin
models. We show that these models have memory effects as those observed
experimentally in super-cooled polymer melts. We discuss our results in
connection to other classical models that capture memory effects. We propose
that a similar protocol applied to quantum glassy systems might be useful to
understand their dynamics.Comment: 24 pages, 12 figure
A Simple Theory of Condensation
A simple assumption of an emergence in gas of small atomic clusters
consisting of particles each, leads to a phase separation (first order
transition). It reveals itself by an emergence of ``forbidden'' density range
starting at a certain temperature. Defining this latter value as the critical
temperature predicts existence of an interval with anomalous heat capacity
behaviour . The value suggested in literature
yields the heat capacity exponent .Comment: 9 pages, 1 figur
Scaling exponents and clustering coefficients of a growing random network
The statistical property of a growing scale-free network is studied based on
an earlier model proposed by Krapivsky, Rodgers, and Redner [Phys. Rev. Lett.
86, 5401 (2001)], with the additional constraints of forbidden of
self-connection and multiple links of the same direction between any two nodes.
Scaling exponents in the range of 1-2 are obtained through Monte Carlo
simulations and various clustering coefficients are calculated, one of which,
, is of order , indicating the network resembles a
small-world. The out-degree distribution has an exponential cut-off for large
out-degree.Comment: six pages, including 5 figures, RevTex 4 forma
Volume 9, Issue 1, Formation
The editors of the Iraqi Journal of Embryos and Infertility Researches (IJEIR) are thankful to the huge efforts made by the reviewers in peerreviewing the submitted manuscripts. Thanks to their efforts the first issue of the 9th volume is now available online with open access to the articles content. We are looking forward in inclusion in relevant indexing in the near future. We would like to acknowledge the reviewers for their contribution, and we wish them the greatest success. We ensured the anonymity of both reviewers and authors and followed a double-blind peer-review procedure. Our published articles are under the creative common attribution license. We strictly followed the COPE ethical code in the published studies. Our articles are published under the Creative Commons Attribution 4.0 International License which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. http://creativecommons.org/licenses/by/4.0
A Potential Energy Landscape Study of the Amorphous-Amorphous Transformation in HO
We study the potential energy landscape explored during a
compression-decompression cycle for the SPC/E (extended simple point charge)
model of water. During the cycle, the system changes from low density amorphous
ice (LDA) to high density amorphous ice (HDA). After the cycle, the system does
not return to the same region of the landscape, supporting the interesting
possibility that more than one significantly different configuration
corresponds to LDA. We find that the regions of the landscape explored during
this transition have properties remarkably different from those explored in
thermal equilibrium in the liquid phase
Experimental Setup and Measuring System to Study SolitaryWave Interaction with Rigid Emergent Vegetation
The aim of this study is to present a peculiar experimental setup, designed to investigate
the interaction between solitary waves and rigid emergent vegetation. Flow rate changes due to the
opening and closing of a software-controlled electro-valve generate a solitary wave. The complexity of
the problem required the combined use of different measurement systems of water level and velocity.
Preliminary results of the experimental investigation, which allow us to point out the effect of the
vegetation on the propagation of a solitary wave and the effectiveness of the measuring system, are also
presented. In particular, water level and velocity field changes due to the interaction of the wave with
rigid vegetation are investigated in detail
Local versus Global Knowledge in the Barabasi-Albert scale-free network model
The scale-free model of Barabasi and Albert gave rise to a burst of activity
in the field of complex networks. In this paper, we revisit one of the main
assumptions of the model, the preferential attachment rule. We study a model in
which the PA rule is applied to a neighborhood of newly created nodes and thus
no global knowledge of the network is assumed. We numerically show that global
properties of the BA model such as the connectivity distribution and the
average shortest path length are quite robust when there is some degree of
local knowledge. In contrast, other properties such as the clustering
coefficient and degree-degree correlations differ and approach the values
measured for real-world networks.Comment: Revtex format. Final version appeared in PR
Radiations and female fertility
Hundreds of thousands of young women are diagnosed with cancer each year, and due to recent advances in screening programs, diagnostic methods and treatment options, survival rates have significantly improved. Radiation therapy plays an important role in cancer treatment and in some cases it constitutes the first therapy proposed to the patient. However, ionizing radiations have a gonadotoxic action with long-term effects that include ovarian insufficiency, pubertal arrest and subsequent infertility. Cranial irradiation may lead to disruption of the hypothalamic-pituitary-gonadal axis, with consequent dysregulation of the normal hormonal secretion. The uterus might be damaged by radiotherapy, as well. In fact, exposure to radiation during childhood leads to altered uterine vascularization, decreased uterine volume and elasticity, myometrial fibrosis and necrosis, endometrial atrophy and insufficiency. As radiations have a relevant impact on reproductive potential, fertility preservation procedures should be carried out before and/or during anticancer treatments. Fertility preservation strategies have been employed for some years now and have recently been diversified thanks to advances in reproductive biology. Aim of this paper is to give an overview of the various effects of radiotherapy on female reproductive function and to describe the current fertility preservation options
- …