2,315 research outputs found

    Somatostatin receptor 5 and cannabinoid receptor 1 activation inhibit secretion of glucose-dependent insulinotropic polypeptide from intestinal K cells in rodents.

    Get PDF
    AIMS/HYPOTHESIS: Glucose-dependent insulinotropic polypeptide (GIP) is an enteroendocrine hormone that promotes storage of glucose and fat. Its secretion from intestinal K cells is triggered by nutrient ingestion and is modulated by intracellular cAMP. In view of the proadipogenic actions of GIP, this study aimed to identify pathways in K cells that lower cAMP levels and GIP secretion. METHODS: Murine K cells purified by flow cytometry were analysed for expression of G(αi)-coupled receptors by transcriptomic microarrays. Somatostatin and cannabinoid receptor expression was confirmed by quantitative RT-PCR. Hormone secretion in vitro was measured in GLUTag and primary murine intestinal cultures. cAMP was monitored in GLUTag cells using the genetically encoded sensor Epac2-camps. In vivo tolerance tests were performed in cannulated rats. RESULTS: Purified murine K cells expressed high mRNA levels for somatostatin receptors (Sstrs) Sstr2, Sstr3 and Sstr5, and cannabinoid receptor type 1 (Cnr1, CB1). Somatostatin inhibited GIP and glucagon-like peptide-1 (GLP-1) secretion from primary small intestinal cultures, in part through SSTR5, and reduced cAMP generation in GLUTag cells. Although the CB1 agonist methanandamide (mAEA) inhibited GIP secretion, no significant effect was observed on GLP-1 secretion from primary cultures. In cannulated rats, treatment with mAEA prior to an oral glucose tolerance test suppressed plasma GIP but not GLP-1 levels, whereas the CB1 antagonist AM251 elevated basal GIP concentrations. CONCLUSIONS/INTERPRETATION: GIP release is inhibited by somatostatin and CB1 agonists. The differential effects of CB1 ligands on GIP and GLP-1 release may provide a new tool to dissociate secretion of these incretin hormones and lower GIP but not GLP-1 levels in vivo

    Primate modularity and evolution: first anatomical network analysis of primate head and neck musculoskeletal system

    Get PDF
    Network theory is increasingly being used to study morphological modularity and integration. Anatomical network analysis (AnNA) is a framework for quantitatively characterizing the topological organization of anatomical structures and providing an operational way to compare structural integration and modularity. Here we apply AnNA for the first time to study the macroevolution of the musculoskeletal system of the head and neck in primates and their closest living relatives, paying special attention to the evolution of structures associated with facial and vocal communication. We show that well-defined left and right facial modules are plesiomorphic for primates, while anthropoids consistently have asymmetrical facial modules that include structures of both sides, a change likely related to the ability to display more complex, asymmetrical facial expressions. However, no clear trends in network organization were found regarding the evolution of structures related to speech. Remarkably, the increase in the number of head and neck muscles – and thus of musculoskeletal structures – in human evolution led to a decrease in network density and complexity in humans

    ADAM17-Mediated Processing of TNF-α Expressed by Antiviral Effector CD8+ T Cells Is Required for Severe T-Cell-Mediated Lung Injury

    Get PDF
    Influenza infection in humans evokes a potent CD8+ T-cell response, which is important for clearance of the virus but may also exacerbate pulmonary pathology. We have previously shown in mice that CD8+ T-cell expression of TNF-a is required for severe and lethal lung injury following recognition of an influenza antigen expressed by alveolar epithelial cells. Since TNF-a is first expressed as a transmembrane protein that is then proteolytically processed to release a soluble form, we sought to characterize the role of TNF-a processing in CD8+ T-cell-mediated injury. In this study we observed that inhibition of ADAM17-mediated processing of TNF-a by CD8+ T cells significantly attenuated the diffuse alveolar damage that occurs after T-cell transfer, resulting in enhanced survival. This was due in part to diminished chemokine expression, as TNF-aprocessing was required for lung epithelial cell expression of CXCL2 and the subsequent inflammatory infiltration. We confirmed the importance of CXCL2 expression in acute lung injury by transferring influenza-specific CD8+ T cells into transgenic mice lacking CXCR2. These mice exhibited reduced airway infiltration, attenuated lung injury, and enhanced survival. Theses studies describe a critical role for TNF-a processing by CD8+ T cells in the initiation and severity of acute lung injury, which may have important implications for limiting immunopathology during influenza infection and other human infectious or inflammatory diseases

    Clonal karyotype evolution involving ring chromosome 1 with myelodysplastic syndrome subtype RAEB-t progressing into acute leukemia

    Get PDF
    s Karyotypic evolution is a well-known phenomenon in patients with malignant hernatological disorders during disease progression. We describe a 50-year-old male patient who had originally presented with pancytopenia in October 1992. The diagnosis of a myelodysplastic syndrome (MDS) FAB subtype RAEB-t was established in April 1993 by histological bone marrow (BM) examination, and therapy with low-dose cytosine arabinoside was initiated. In a phase of partial hernatological remission, cytogenetic assessment in August 1993 revealed a ring chromosome 1 in 13 of 21 metaphases beside BM cells with normal karyotypes {[}46,XY,r(1)(p35q31)/46,XY]. One month later, the patient progressed to an acute myeloid leukemia (AML), subtype M4 with 40% BM blasts and cytogenetic examination showed clonal evolution by the appearance of additional numerical aberrations in addition to the ring chromosome{[}46,XY,r(1),+8,-21/45,XY,r(1),+8,-21,-22/46, XY]. Intensive chemotherapy and radiotherapy was applied to induce remission in preparation for allogeneic bone marrow transplantation (BMT) from the patient's HLA-compatible son. After BMT, complete remission was clinically, hematologically and cytogenetically (normal male karyotype) confirmed. A complete hematopoietic chimerism was demonstrated. A relapse in January 1997 was successfully treated using donor lymphocyte infusion and donor peripheral blood stem cells (PB-SC) in combination with GM-CSF as immunostimulating agent in April 1997, and the patient's clinical condition remained stable as of January 2005. This is an interesting case of a patient with AML secondary to MDS. With the ring chromosome 1 we also describe a rare cytogenetic abnormality that predicted the poor prognosis of the patient, but the patient could be cured by adoptive immunotherapy and the application of donor's PB-SC. This case confirms the value of cytogenetic analysis in characterizing the malignant clone in hernatological neoplasias, the importance of controlling the quality of an induced remission and of the detection of a progress of the disease. Copyright (c) 2006 S. Karger AG, Basel

    Quantifying measures to limit wind driven resuspension of sediments for improvement of the ecological quality in some shallow Dutch lakes

    Get PDF
    Although phosphorus loadings are considered the main pressure for most shallow lakes, wind-driven resuspension can cause additional problems for these aquatic ecosystems. We quantified the potential effectiveness of measures to reduce the contribution of resuspended sediments, resulting from wind action, to the overall light attenuation for three comparable shallow peat lakes with poor ecological status in the Netherlands: Loosdrecht, Nieuwkoop, and Reeuwijk (1.8–2.7 m depth, 1.6–2.5 km fetch). These measures are: 1. wave reducing barriers, 2. water level fluctuations, 3. capping of the sediment with sand, and 4. combinations of above. Critical shear stress of the sediments for resuspension (Vcrit), size distribution, and optical properties of the suspended material were quantified in the field (June 2009) and laboratory. Water quality monitoring data (2002–2009) showed that light attenuation by organic suspended matter in all lakes is high. Spatial modeling of the impact of these measures showed that in Lake Loosdrecht limiting wave action can have significant effects (reductions from 6% exceedance to 2% exceedance of Vcrit), whereas in Lake Nieuwkoop and Lake Reeuwijk this is less effective. The depth distribution and shape of Lake Nieuwkoop and Lake Reeuwijk limit the role of wind-driven resuspension in the total suspended matter concentration. Although the lakes are similar in general appearance (origin, size, and depth range) measures suitable to improve their ecological status differ. This calls for care when defining the programme of measures to improve the ecological status of a specific lake based on experience from other lakes.

    Anatomical Network Comparison of Human Upper and Lower, Newborn and Adult, and Normal and Abnormal Limbs, with Notes on Development, Pathology and Limb Serial Homology vs. Homoplasy

    Get PDF
    How do the various anatomical parts (modules) of the animal body evolve into very different integrated forms (integration) yet still function properly without decreasing the individual's survival? This long-standing question remains unanswered for multiple reasons, including lack of consensus about conceptual definitions and approaches, as well as a reasonable bias toward the study of hard tissues over soft tissues. A major difficulty concerns the non-trivial technical hurdles of addressing this problem, specifically the lack of quantitative tools to quantify and compare variation across multiple disparate anatomical parts and tissue types. In this paper we apply for the first time a powerful new quantitative tool, Anatomical Network Analysis (AnNA), to examine and compare in detail the musculoskeletal modularity and integration of normal and abnormal human upper and lower limbs. In contrast to other morphological methods, the strength of AnNA is that it allows efficient and direct empirical comparisons among body parts with even vastly different architectures (e.g. upper and lower limbs) and diverse or complex tissue composition (e.g. bones, cartilages and muscles), by quantifying the spatial organization of these parts-their topological patterns relative to each other-using tools borrowed from network theory. Our results reveal similarities between the skeletal networks of the normal newborn/adult upper limb vs. lower limb, with exception to the shoulder vs. pelvis. However, when muscles are included, the overall musculoskeletal network organization of the upper limb is strikingly different from that of the lower limb, particularly that of the more proximal structures of each limb. Importantly, the obtained data provide further evidence to be added to the vast amount of paleontological, gross anatomical, developmental, molecular and embryological data recently obtained that contradicts the long-standing dogma that the upper and lower limbs are serial homologues. In addition, the AnNA of the limbs of a trisomy 18 human fetus strongly supports Pere Alberch's ill-named "logic of monsters" hypothesis, and contradicts the commonly accepted idea that birth defects often lead to lower integration (i.e. more parcellation) of anatomical structures
    corecore