13,852 research outputs found

    Inductive benchmarking for purely functional data structures

    Get PDF
    Every designer of a new data structure wants to know how well it performs in comparison with others. But finding, coding and testing applications as benchmarks can be tedious and time-consuming. Besides, how a benchmark uses a data structure may considerably affect its apparent efficiency, so the choice of applications may bias the results. We address these problems by developing a tool for inductive benchmarking. This tool, Auburn, can generate benchmarks across a wide distribution of uses. We precisely define 'the use of a data structure', upon which we build the core algorithms of Auburn: how to generate a benchmark from a description of use, and how to extract a description of use from an application. We then apply inductive classification techniques to obtain decision trees for the choice between competing data structures. We test Auburn by benchmarking several implementations of three common data structures: queues, random-access lists and heaps. These and other results show Auburn to be a useful and accurate tool, but they also reveal some limitations of the approach

    Skull Flexure from Blast Waves: A Mechanism for Brain Injury with Implications for Helmet Design

    Full text link
    Traumatic brain injury [TBI] has become a signature injury of current military conflicts, with debilitating, costly, and long-lasting effects. Although mechanisms by which head impacts cause TBI have been well-researched, the mechanisms by which blasts cause TBI are not understood. From numerical hydrodynamic simulations, we have discovered that non-lethal blasts can induce sufficient skull flexure to generate potentially damaging loads in the brain, even without a head impact. The possibility that this mechanism may contribute to TBI has implications for injury diagnosis and armor design.Comment: version in press, Physical Review Letters; 17 pages, 5 figures (includes supplementary material

    Density fluctuations from warm inflation

    Full text link
    Thermal fluctuations provide the main source of large scale density perturbations in warm inflationary models of the early universe. For the first time, general results are obtained for the power spectrum in the case when the friction coefficient in the inflaton equation of motion depends on temperature. A large increase in the amplitude of perturbations occurs when the friction coefficient increases with temperature. This has to be taken into account when constructing models of warm inflation. New results are also given for the thermal fluctuations in the weak regime of warm inflation when the friction coefficient is relatively small.Comment: 14 pages, 4 figures, ReVTe

    Cosmological Constraints on Dissipative Models of Inflation

    Full text link
    (Abridged) We study dissipative inflation in the regime where the dissipative term takes a specific form, \Gamma=\Gamma(\phi), analyzing two models in the weak and strong dissipative regimes with a SUSY breaking potential. After developing intuition about the predictions from these models through analytic approximations, we compute the predicted cosmological observables through full numerical evolution of the equations of motion, relating the mass scale and scale of dissipation to the characteristic amplitude and shape of the primordial power spectrum. We then use Markov Chain Monte Carlo techniques to constrain a subset of the models with cosmological data from the cosmic microwave background (WMAP three-year data) and large scale structure (SDSS Luminous Red Galaxy power spectrum). We find that the posterior distributions of the dissipative parameters are highly non-Gaussian and their allowed ranges agree well with the expectations obtained using analytic approximations. In the weak regime, only the mass scale is tightly constrained; conversely, in the strong regime, only the dissipative coefficient is tightly constrained. A lower limit is seen on the inflation scale: a sub-Planckian inflaton is disfavoured by the data. In both weak and strong regimes, we reconstruct the limits on the primordial power spectrum and show that these models prefer a {\it red} spectrum, with no significant running of the index. We calculate the reheat temperature and show that the gravitino problem can be overcome with large dissipation, which in turn leads to large levels of non-Gaussianity: if dissipative inflation is to evade the gravitino problem, the predicted level of non-Gaussianity might be seen by the Planck satellite.Comment: 14 pages, 9 figures, Accepted by JCAP without text changes, References adde

    Shock resilience of structural pillars in naval vessels

    Get PDF
    Although structural pillars are extensively used in commercial vessels, traditionally their use on board UK warships has been discouraged. This is due to the tendency of pillars to "punch through" the deck when subjected to the high impulse loading of shock from underwater explosions (UNDEX). There are however many spaces within naval ships that would significantly benefit from the wide-open spaces created from the use of pillars as opposed to full bulkheads, such as machinery rooms, mooring decks and accommodation flats. This paper re-addresses the question of a shock capable pillar, looking at how a pillar can be designed or mounted to increase its resilience to shock from underwater explosions. It is proposed that the advice against the use of pillars in warships could be unfounded; this is supported by the fact that not all navies reject their use. The results of this study imply that as long as the pillar is sited properly on primary structural members, then pillar buckling should occur long before "punch though"

    Shock resilience of structural pillars in naval vessels

    Get PDF
    Although structural pillars are extensively used in commercial vessels, traditionally their use on board UK warships has been discouraged. This is due to the tendency of pillars to "punch through" the deck when subjected to the high impulse loading of shock from underwater explosions (UNDEX). There are however many spaces within naval ships that would significantly benefit from the wide-open spaces created from the use of pillars as opposed to full bulkheads, such as machinery rooms, mooring decks and accommodation flats. This paper re-addresses the question of a shock capable pillar, looking at how a pillar can be designed or mounted to increase its resilience to shock from underwater explosions. It is proposed that the advice against the use of pillars in warships could be unfounded; this is supported by the fact that not all navies reject their use. The results of this study imply that as long as the pillar is sited properly on primary structural members, then pillar buckling should occur long before "punch though"

    An optical view of the filament region of Abell 85

    Full text link
    We compare the distribution of optically and Halpha (Ha) selected galaxies in the Southern half of the nearby Abell 85 (A85) cluster with the recently discovered X-ray filament (XRF). We search for galaxies where star formation (SF) may have been triggered by interactions with intracluster gas or tidal pressure due to the cluster potential when entering the cluster. Our analysis is based on images obtained with CFHT MegaPrime/MegaCam (1x1 deg2 field) in four bands (ugri) and ESO 2.2mWFI (38'x36' field) in a narrow band filter corresponding to the redshifted Halpha (Ha) line and in a broad R-band filter. The LFs are estimated by statistically subtracting a reference field. Background contamination is minimized by cutting out galaxies redder than the observed red sequence in the g-i vs. i colour-magnitude diagram. The galaxy distribution shows a significantly flattened cluster, whose principal axis is slightly offset from the XRF. The analysis of the broad band LFs shows that the filament region is well populated. The filament is also independently detected as a gravitationally bound structure by the Serna & Gerbal hierarchical method. 101 galaxies are detected in Ha, among which 23 have spectroscopic redshifts in the cluster, 2 have spectroscopic redshifts higher than the cluster and 58 have photometric redshifts that tend to indicate that they are background objects.The 23 galaxies with spectroscopic redshifts in the cluster are mostly concentrated in the South part of the cluster and along the filament. We find a number of galaxies showing evidence for SF in the XRF, and all our results are consistent with the previous hypothesis that the XRF in A85 is a gravitationally bound structure made of groups falling on to the main cluster.Comment: Accepted in A&A. 39 pages, 107 figures. Full resolution images available at ftp://ftp.iap.fr/pub/from_users/gam/A85
    • …
    corecore