54 research outputs found

    MOS11: A New Component in the mRNA Export Pathway

    Get PDF
    Nucleocytoplasmic trafficking is emerging as an important aspect of plant immunity. The three related pathways affecting plant immunity include Nuclear Localization Signal (NLS)–mediated nuclear protein import, Nuclear Export Signal (NES)–dependent nuclear protein export, and mRNA export relying on MOS3, a nucleoporin belonging to the Nup107–160 complex. Here we report the characterization, identification, and detailed analysis of Arabidopsis modifier of snc1, 11 (mos11). Mutations in MOS11 can partially suppress the dwarfism and enhanced disease resistance phenotypes of snc1, which carries a gain-of-function mutation in a TIR-NB-LRR type Resistance gene. MOS11 encodes a conserved eukaryotic protein with homology to the human RNA binding protein CIP29. Further functional analysis shows that MOS11 localizes to the nucleus and that the mos11 mutants accumulate more poly(A) mRNAs in the nucleus, likely resulting from reduced mRNA export activity. Epistasis analysis between mos3-1 and mos11-1 revealed that MOS11 probably functions in the same mRNA export pathway as MOS3, in a partially overlapping fashion, before the mRNA molecules pass through the nuclear pores. Taken together, MOS11 is identified as a new protein contributing to the transfer of mature mRNA from the nucleus to the cytosol

    DSP1Gene ofDrosophila melanogaster encodes an HMG-domain protein that plays multiple roles in development

    No full text
    International audienceDSP1 is an HMG-box containing protein of Drosophila melanogaster which was first identified as a co-repressor of the Dorsal protein. Recently, the analysis of the structure of the gene has led us to propose that DSP1 is the Drosophila equivalent of the ubiquitous vertebrate HMG 1/2 proteins. In the present paper, the patterns of expression of DSP1 protein and RNA in adult flies and during development are reported. In the adults DSP1 protein is located in nurse cells of ovaries and in brain. During eggs development uniform expression of DSP1 protein persists until the end of germband retraction. At later stages, expression is restricted to the ventral nerve chord and brain. Using P-element mutagenesis, we have isolated a mutant deficient in DSP1 functions. Genetic studies of this mutant show that DSP1 protein is essential for the growth and the development of Drosophila. In addition to be a co-repressor of the transcriptional activator Dorsal our results provide compelling evidence that DSP1 is a regulator involved in several pathways necessary for the development of the fly

    HMG boxes of DSP1 protein interact with the Rel homology domain of transcription factors

    No full text
    International audienceFormation of the dorsoventral axis in Drosophila melanogaster is mediated through control of the expression of several genes by the morphogen Dorsal. In the ventral part of the embryo Dorsal activates twist and represses zen amongst others. Recently, several proteins have been shown to assist Dorsal in the repression of zen, one of which is DSP1, a HMG box protein that was isolated as a putative co-repressor of Dorsal. In this report we used a DSP1 null mutant to ascertain in vivo the involvement of DSP1 in Dorsal-mediated repression of zen but not in the activation of twist. We show that Dorsal has the ability to interact with DSP1 in vitro as well as with rat HMG1. Using truncated versions of the proteins we located the domains of interaction as being the HMG boxes for DSP1 and HMG1 and the Rel domain for Dorsal. Finally, studies of the zen DNA binding properties of Dorsal and another related Rel protein (Gambif1 from Anopheles gambiae) revealed that their DNA binding affinities were increased in the presence of DSP1 and HMG1

    The RPC31 gene of Saccharomyces cerevisiae encodes a subunit of RNA polymerase C (III) with an acidic tail.

    Get PDF
    The RPC31 gene encoding the C31 subunit of Saccharomyces cerevisiae RNA polymerase C (III) has been isolated, starting from a C-terminal fragment cloned on a lambda gt11 library. It is unique on the yeast genome and lies on the left arm of chromosome XIV, very close to a NotI site. Its coding sequence perfectly matches the amino acid sequence of two oligopeptides prepared from purified C31. It is also identical to the ACP2 gene previously described as encoding an HMG1-like protein (W. Haggren and D. Kolodrubetz, Mol. Cell. Biol. 8:1282-1289, 1988). Thus, ACP2 and RPC31 are allelic and encode a subunit of RNA polymerase C. The c31 protein has a highly acidic C-terminal tail also found in several other chromatin-interacting proteins, including animal HMG1. Outside this domain, however, there is no appreciable homology to any known protein. The growth phenotypes of a gene deletion, of insertions, and of nonsense mutations indicate that the C31 protein is strictly required for cell growth and that most of the acidic domain is essential for its function. Random mutagenesis failed to yield temperature-sensitive mutants, but a slowly growing mutant was constructed by partial suppression of a UAA nonsense allele of RPC31. Its reduced rate of tRNA synthesis in vivo relative to 5.8S rRNA supports the hypothesis that the C31 protein is a functional subunit of RNA polymerase C

    Deciphering the Dynamic Landscape of Transcription-Associated mRNP Quality Control Components Over the Whole Yeast Genome.

    No full text
    International audienceIn eukaryotic cells, aberrant mRNPs with processing and packaging defects are targeted co-transcriptionally by a surveillance system that triggers their nuclear retention and ultimately the degradation of their mRNA component by the 3'-5' activity of the exosome-associated exonuclease Rrp6. This mRNP quality control process is stimulated by the NNS complex (Nrd1-Nab3-Sen1), which otherwise mediates termination, processing, and decay of ncRNAs. The process involves also the exosome co-activator TRAMP complex (Trf4-Air2-Mtr4). Here, we describe a genome-wide approach to visualize the dynamic movement and coordination of these quality control components over the yeast chromosomes upon perturbation of mRNP biogenesis. The method provides valuable information on how the surveillance system is precisely coordinated both physically and functionally with the transcription machinery to detect the faulty events during perturbation of mRNP biogenesis. The overview shows also that the gathering of the quality control components over affected mRNA genes takes place at the expense of their commitment to be recruited at ncRNA genomic features, provoking termination and processing defects of ncRNAs
    • …
    corecore