141 research outputs found

    FGF2-Dependent Mesenchyme and Laminin-111 are Niche Factors in Salivary Gland Organoids

    Get PDF
    Epithelial progenitor cells are dependent upon a complex 3D niche to promote their proliferation and differentiation during development, which can be recapitulated in organoids. The specific requirements of the niche remain unclear for many cell types, including the proacinar cells that give rise to secretory acinar epithelial cells that produce saliva. Here, using ex vivo cultures of E16 primary mouse submandibular salivary gland epithelial cell clusters, we investigated the requirement for mesenchymal cells and other factors in producing salivary organoids in culture. Native E16 salivary mesenchyme, but not NIH3T3 cells or mesenchymal cell conditioned medium, supported robust protein expression of the progenitor marker Kit and the acinar/proacinar marker AQP5, with a requirement for FGF2 expression by the mesenchyme. Enriched salivary epithelial clusters that were grown in laminin-enriched basement membrane extract or laminin-111 together with exogenous FGF2, but not with EGF, underwent morphogenesis to form organoids that displayed robust expression of AQP5 in terminal buds. Knockdown of FGF2 in the mesenchyme or depletion of mesenchyme cells from the organoids significantly reduced AQP5 levels even in the presence of FGF2, suggesting a requirement for autocrine FGF2 signaling in the mesenchyme cells for AQP5 expression. We conclude that basement membrane proteins and mesenchyme cells function as niche factors in salivary organoids

    Design of target systems for production of PET nuclides

    Full text link
    Target designs are presented for production of 11C, 13N, 15O and 18F by proton and deuteron reactions. Seven targets of two basic configurations (gas and water) and their respective manifold and control systems are detailed with design specifications and operational characteristics for the production of 11C-CO2, 11C-HCN, 13N-NH+4, 15O-O2, 18F-F- and 18F-F2 precursors. Short irradiation times (5-20 min) and high current (30 [mu]A) are used to produce near theoretical quantities of labeled PET precursors.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/27972/1/0000403.pd

    Comparative analysis of excretory-secretory antigens of Trichinella spiralis and Trichinella britovi muscle larvae by two-dimensional difference gel electrophoresis and immunoblotting

    Get PDF
    Abstract Background Trichinellosis is a zoonotic disease in humans caused by Trichinella spp. The present study was undertaken to discover excretory-secretory (E-S) proteins from T. spiralis and T. britovi muscle larvae (ML) that hold promise for species-specific diagnostics. To that end, the purified E-S proteins were analyzed by fluorescent two-dimensional difference gel electrophoresis (2-D DIGE) coupled with protein identification by liquid chromatography-tandem mass spectrometry (LC-MS/MS). To search for immunoreactive proteins that are specifically recognized by host antibodies the E-S proteins were subjected to two-dimensional (2-DE) immunoblotting with antisera derived from pigs experimentally infected with T. spiralis or T. britovi. Results According to 2-D DIGE analysis, a total of twenty-two proteins including potentially immunogenic proteins and proteins produced only by one of the two Trichinella species were subjected to LC-MS/MS for protein identification. From these proteins seventeen could be identified, of which many were identified in multiple spots, suggesting that they have undergone post-translational modification, possibly involving glycosylation and/or proteolysis. These proteins included 5'-nucleotidase, serine-type protease/proteinase, and p43 glycoprotein (gp43) as well as 49 kDa E-S protein (p49). Our findings also suggest that some of the commonly identified proteins were post-translationally modified to different extents, which in certain cases seemed to result in species-specific modification. Both commonly and specifically recognized immunoreactive proteins were identified by 2-DE immunoblotting; shared antigens were identified as gp43 and different protease variants, whereas those specific to T. britovi included multiple isoforms of the 5'-nucleotidase. Conclusions Both 2-D DIGE and 2-DE immunoblotting approaches indicate that T. spiralis and T. britovi produce somewhat distinctive antigen profiles, which contain E-S antigens with potential as species-specific diagnostic markers for Trichinella. Our results also demonstrate the value of 2-D DIGE as a versatile tool to compare secretomes of different Trichinella species for pinpointing factors contributing to the interaction with the host

    Prevalence of antibodies against Neospora caninum in dogs from urban areas in Central Poland

    Get PDF
    Neospora caninum is a protozoan parasite which causes abortion in cattle as well as reproduction problems and neurological disorders in dogs. To assess the prevalence of the parasite in urban dogs in the Mazovian Voivodeship, Central Poland, serum samples from 257 dogs were analyzed for the presence of specific IgG antibodies. The examined dogs visited three private veterinary clinics located in Warsaw due to control tests, vaccinations, or other reasons not directly connected with neosporosis. Using ELISA and Western blot, antibodies against the parasite were detected in 56 out of 257 dogs, giving a prevalence of 21.7%. A greater prevalence was observed in female dogs than in males, 28% and 17.3%, respectively, and the differences were statistically significant (p < 0.05). There were no significant differences in seroprevalence of Neospora infection within the age groups (p > 0.05). This study indicates the presence of N. caninum in the Mazovian Voivodeship, in dogs which live in urban areas and exposure of these dogs to the parasite. The fact that seropositive dogs had no contact with cattle confirms the important role of dogs in the parasite’s epidemiology

    Innate Immune Response to Viral Infections in Primary Bronchial Epithelial Cells is Modified by the Atopic Status of Asthmatic Patients

    Get PDF
    Purpose In order to gain an insight into determinants of reported variability in immune responses to respiratory viruses in human bronchial epithelial cells (HBECs) from asthmatics, the responses of HBEC to viral infections were evaluated in HBECs from phenotypically heterogeneous groups of asthmatics and in healthy controls. Methods HBECs were obtained during bronchoscopy from 10 patients with asthma (6 atopic and 4 non-atopic) and from healthy controls (n=9) and grown as undifferentiated cultures. HBECs were infected with parainfluenza virus (PIV)-3 (MOI 0.1) and rhinovirus (RV)-1B (MOI 0.1), or treated with medium alone. The cell supernatants were harvested at 8, 24, and 48 hours. IFN-α, CXCL10 (IP-10), and RANTES (CCL5) were analyzed by using Cytometric Bead Array (CBA), and interferon (IFN)-β and IFN-λ1 by ELISA. Gene expression of IFNs, chemokines, and IFN-regulatory factors (IRF-3 and IRF-7) was determined by using quantitative PCR. Results PIV3 and RV1B infections increased IFN-λ1 mRNA expression in HBECs from asthmatics and healthy controls to a similar extent, and virus-induced IFN-λ1 expression correlated positively with IRF-7 expression. Following PIV3 infection, IP-10 protein release and mRNA expression were significantly higher in asthmatics compared to healthy controls (median 36.03-fold). No differences in the release or expression of RANTES, IFN-λ1 protein and mRNA, or IFN-α and IFN-β mRNA between asthmatics and healthy controls were observed. However, when asthmatics were divided according to their atopic status, HBECs from atopic asthmatics (n=6) generated significantly more IFN-λ1 protein and demonstrated higher IFN-α, IFN-β, and IRF-7 mRNA expressions in response to PIV3 compared to non-atopic asthmatics (n=4) and healthy controls (n=9). In response to RV1B infection, IFN-β mRNA expression was lower (12.39-fold at 24 hours and 19.37-fold at 48 hours) in non-atopic asthmatics compared to atopic asthmatics. Conclusions The immune response of HBECs to virus infections may not be deficient in asthmatics, but seems to be modified by atopic status

    Macrorheology of cystic fibrosis, chronic obstructive pulmonary disease & normal sputum

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prior microrheologic assessments of selected, microlitre plugs of cystic fibrosis (CF) sputum suggest no intrinsic rheologic abnormality. However, such analyses may not be representative of CF sputum as a whole. We therefore reassessed this question using whole sputum macrorheology. Additionally, we wished to further explore the relationships between sputum rheology, inflammation and infection.</p> <p>Methods</p> <p>Dynamic oscillatory macrorheometry was performed on whole expectorated sputum from stable adults with CF (n = 18) and COPD (n = 12) and induced sputum from normal controls (n = 7). Concomitant sputum inflammatory mediator levels were measured in CF and COPD samples. Sputum collected from CF subjects (n = 6) at commencement and completion of intravenous antibiotic therapy for an infective exacerbation was also assessed.</p> <p>Results</p> <p>CF sputum neutrophil elastase activity (NE) was significantly related to degree of sputum purulence (p = 0.049) and correlated significantly with measures of sputum viscoelasticity (r = 0.696, p = 0.008 for storage modulus G' at 9 Hz). There were significant differences in viscoelasticity between subject groups when samples were compared irrespective of appearance/degree of sputum purulence. However, the macrorheology of mucoid CF sputum did not differ from normal sputum (eg median (range) G' at 9 Hz 2.25 (0.79, 3.26) vs 2.04 (1.4,4.6) Pa, p = 1). In contrast, mucoid COPD samples demonstrated significantly greater viscoelasticity (G' at 9 Hz 4.5 (2.4, 23) Pa) than sputum from both CF (p = 0.048) & normal subjects (p = 0.009). Antibiotic therapy during exacerbations was associated with significant reductions in CF sputum viscoelasticity, with mean (SD) G' at 9 Hz decreasing from 28.5 (11.5) Pa at commencement to 6.4 (4.6) Pa on day 7 (p = 0.01).</p> <p>Conclusion</p> <p>The macrorheologic properties of whole, mucoid CF sputum are not different from normal, confirming the results of prior microrheologic studies. Instead, CF sputum viscoelasticity is related to secondary infection, decreases with intravenous antibiotic therapy and correlates with inflammation. In contrast, COPD sputum demonstrates inherently greater viscoelasticity, providing a novel target for potential therapeutic interventions.</p

    Profiling cytotoxic microRNAs in pediatric and adult glioblastoma cells by high-content screening, identification, and validation of miR-1300

    Get PDF
    MicroRNAs play an important role in the regulation of mRNA translation and have therapeutic potential in cancer and other diseases. To profile the landscape of microRNAs with significant cytotoxicity in the context of glioblastoma (GBM), we performed a high-throughput screen in adult and pediatric GBM cells using a synthetic oligonucleotide library representing all known human microRNAs. Bioinformatics analysis was used to refine this list and the top seven microRNAs were validated in a larger panel of GBM cells using state-of-the-art in vitro assays. The cytotoxic effect of our most relevant candidate was assessed in a preclinical model. Our screen identified ~100 significantly cytotoxic microRNAs with 70% concordance between cell lines. MicroRNA-1300 (miR-1300) was the most potent and robust candidate. We observed a striking binucleated phenotype in miR-1300 transfected cells due to cytokinesis failure followed by apoptosis. This was also observed in two stem-like patient-derived cultures. We identified the physiological role of miR-1300 as a regulator of endomitosis in megakaryocyte differentiation where blockade of cytokinesis is an essential step. In GBM cells, where miR-1300 is normally not expressed, the oncogene Epithelial Cell Transforming 2 (ECT2) was validated as a direct key target. ECT2 siRNA phenocopied the effects of miR-1300, and ECT2 overexpression led to rescue of miR-1300 induced binucleation. We showed that ectopic expression of miR-1300 led to decreased tumor growth in an orthotopic GBM model. Our screen provides a resource for the neuro-oncology community and identified miR-1300 as a novel regulator of endomitosis with translatable potential for therapeutic application

    Evaluation of Wuchereria bancrofti GST as a Vaccine Candidate for Lymphatic Filariasis

    Get PDF
    Lymphatic parasites survive for years in a complex immune environment by adopting various strategies of immune modulation, which includes counteracting the oxidative free radical damage caused by the host. We now know that the filarial parasites secrete antioxidant enzymes. Among these, the glutathione-S-transferases (GSTs) have the potent ability to effectively neutralize cytotoxic products arising from reactive oxygen species (ROS) that attack cell membranes. Thus, GSTs have the potential to protect the parasite against host oxidative stress. GSTs of several helminthes, including schistosomes, fasciola and the filarial parasite Seteria cervi, are also involved in inducing protective immunity in the host. The schistosome 28 kDa GST has been successfully developed into a vaccine and is currently in Phase II clinical trials. Thus, GST appears to be a potential target for vaccine development. Therefore, in the present study, we cloned W. bancrofti GST, and expressed and purified the recombinant protein. Immunization and challenge experiments showed that 61% of protection could be achieved against B. malayi infections in a jird model. In vitro studies confirm that the anti-WbGST antibodies participate in the killing of B. malayi L3 through an ADCC mechanism and enzymatic activity of WbGST appears to be critical for this larvicidal function

    Balancing repair and tolerance of DNA damage caused by alkylating agents

    Get PDF
    Alkylating agents constitute a major class of frontline chemotherapeutic drugs that inflict cytotoxic DNA damage as their main mode of action, in addition to collateral mutagenic damage. Numerous cellular pathways, including direct DNA damage reversal, base excision repair (BER) and mismatch repair (MMR), respond to alkylation damage to defend against alkylation-induced cell death or mutation. However, maintaining a proper balance of activity both within and between these pathways is crucial for a favourable response of an organism to alkylating agents. Furthermore, the response of an individual to alkylating agents can vary considerably from tissue to tissue and from person to person, pointing to genetic and epigenetic mechanisms that modulate alkylating agent toxicity
    corecore