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RESEARCH ARTICLE

FGF2-dependent mesenchyme and laminin-111 are niche factors
in salivary gland organoids
Zeinab F. Hosseini1,2, Deirdre A. Nelson1, Nicholas Moskwa1,2, Lauren M. Sfakis3,*, James Castracane3 and
Melinda Larsen1,‡

ABSTRACT
Epithelial progenitor cells are dependent upon a complex 3D niche to
promote their proliferation and differentiation during development,
which can be recapitulated in organoids. The specific requirements of
the niche remain unclear for many cell types, including the proacinar
cells that give rise to secretory acinar epithelial cells that produce
saliva. Here, using ex vivo cultures of E16 primary mouse
submandibular salivary gland epithelial cell clusters, we
investigated the requirement for mesenchymal cells and other
factors in producing salivary organoids in culture. Native E16
salivary mesenchyme, but not NIH3T3 cells or mesenchymal cell
conditioned medium, supported robust protein expression of the
progenitor marker Kit and the acinar/proacinar marker AQP5, with a
requirement for FGF2 expression by the mesenchyme. Enriched
salivary epithelial clusters that were grown in laminin-enriched
basement membrane extract or laminin-111 together with
exogenous FGF2, but not with EGF, underwent morphogenesis to
form organoids that displayed robust expression of AQP5 in terminal
buds. Knockdown of FGF2 in the mesenchyme or depletion of
mesenchyme cells from the organoids significantly reduced AQP5
levels even in the presence of FGF2, suggesting a requirement for
autocrine FGF2 signaling in the mesenchyme cells for AQP5
expression. We conclude that basement membrane proteins and
mesenchyme cells function as niche factors in salivary organoids.

KEY WORDS: Mesenchyme, Submandibular salivary gland, FGF2,
Organoid, Progenitor

INTRODUCTION
Salivary glands, like many other organs, including the mammary
gland, lacrimal gland, lung and prostate undergo branching
morphogenesis to generate an arborized organ containing a large
surface areawithin a relatively small space. Epithelial progenitor cells
undergo branching morphogenesis and differentiation to produce the
functional adult organ. While many studies have demonstrated that
epithelial rudiments lacking mesenchyme can partially recapitulate
normal developmental processes, the epithelial cells are not
autonomous. Early experiments performed by Borghese in 1950

using embryonic submandibular salivary gland (SMG) organ
explants (Borghese, 1950a) demonstrated that the mesenchyme is
critical for the early development of the gland. Subsequent studies
revealed that fibroblast growth factors (FGFs) are required for
branching morphogenesis with FGFs being provided by the
mesenchyme (De Moerlooze et al., 2000; Hoffman et al., 2002;
Jaskoll et al., 2004, 2005; Ohuchi et al., 2000). Recent work
demonstrated that while the epithelium directs early salivary gland
development, FGF expression by the mesenchyme later directs bud
development (Wells et al., 2013). Although epithelial rudiments can
undergo branching morphogenesis in the absence of mesenchyme,
under these conditions, the function of the mesenchyme must be
recapitulated, which can be accomplished by growth of the
epithelium in laminin-rich basement membrane extracts together
with growth factors (Rebustini and Hoffman, 2009; Sequeira et al.,
2010; Steinberg et al., 2005), consistent with the requirement for
mesenchymal factors and a complex 3D environment for support of
early morphogenesis events.

Progenitor cells are required for elaboration of mature organs. Kit
(CD117), a receptor tyrosine kinase that is well known as a marker
of hematopoietic progenitor cells (Kent et al., 2008), is used as a
marker of salivary gland epithelial progenitor cells, although lineage
tracking in the salivary gland has not been reported. Kit protein is
expressed in the distal tips of cells in early embryos [i.e. embryonic
day (E)14] and is expressed in cells distinct from those expressing
the basal progenitor marker cytokeratin 5 (K5; cytokeratins are also
known as KRT proteins) at E16 (Nelson et al., 2013). Kit+ cells are
of therapeutic interest since when they are implanted in vivo, they
can restore gland function (Lombaert et al., 2008; Nanduri et al.,
2013; Pringle et al., 2016). In early embryos, Kit+ salivary epithelial
cells are stimulated to proliferate in an FGF10- and FGFR2b-
dependent manner (FGFR2b is an isoform of FGFR2).
Mesenchymal FGF10 stimulates SOX9 expression in the
epithelium to specify the distal epithelial cells as distinct from the
proximal epithelial cells prior to the initiation of branching
morphogenesis (Chatzeli et al., 2017). Combined Kit and
FGFR2b signaling together positively regulate Kit+ K14+ distal
progenitor epithelial cells (Patel et al., 2014). Kit ligand produced
by isolated epithelium has been shown to be required for an
autocrine-mediated expansion of Kit+ K14+ distal progenitor cells in
early developing glands (Lombaert et al., 2013), although Kit ligand
is more highly expressed at the RNA level in the E13 mesenchyme
(https://sgmap.nidcr.nih.gov/). While the evolution of acinar
progenitor cells is incompletely understood, AQP5 mRNA, the
earliest known proacinar gene, first appears at E14 at the center of
distal end buds (https://sgmap.nidcr.nih.gov/). Robust membrane-
localized AQP5 protein production is detected by E15, which
becomes progressively apically enriched by E16 in many cells that
are Kit+ (Nelson et al., 2013). Although it is known that AQP5
mRNA expression is inhibited by Wnt signaling, which promotesReceived 19 July 2017; Accepted 3 January 2018
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K14 expression (Matsumoto et al., 2016), how Kit and/or AQP5
expression is maintained is incompletely understood.
Organoids are 3D assemblies ofmultiple cell types that can be used

to model and decipher mechanisms required for tissue organization
(Bissell, 2017; Clevers, 2016; Simian et al., 2001; Simian and Bissell,
2017). The term organoid was first used to describe branching 3D
structures generated from clusters of mammary gland cells (Simian
et al., 2001), but the term has now been expanded to encompass
multiple techniques for forming 3D organ-like structures, ranging
from primary explants of tissue fragments to epithelial–mesenchymal
co-cultures to clonal derivatives of primary epithelial stem cells
(Kretzschmar and Clevers, 2016; Shamir and Ewald, 2014; Simian
and Bissell, 2017). Organoids self-organize in vitro when provided
with niche factors that facilitate their organization using processes that
in part resemble the normal developmental progression that occurs
during organogenesis in vivo (Lancaster and Knoblich, 2014). We
previously demonstrated that dissociated E13 primary embryonic
SMG cells can self-organize to form organoid-like structures that
initiate branchingmorphogenesis anddifferentiation (Wei et al., 2007).
Subsequent studies demonstrated that organoids referred to as ‘organ
germs’ derived from E13 embryonic salivary gland cells can undergo
functional differentiationwhen implanted in vivo (Ogawa et al., 2013),
similar to other organs (Hirayama et al., 2013; Ikeda and Tsuji, 2008;
Takebe et al., 2015; Xinaris et al., 2012). Implantation of adult mouse
salivary gland stem cells restored gland function when implanted into
irradiated glands (Nanduri et al., 2011, 2014; Pringle et al., 2011),
demonstrating the potential for future clinical application of organoids
for regenerative medicine. Organoids derived from single human
pluripotent stem cells can be directed to differentiate in an organ-
specific manner with a stepwise application of specific combinations
of growth regulators (Sato and Clevers, 2015). While directed
differentiation of pluripotent stem cells is possible for many organs,
knowledge of how specific niche factors facilitate formation and
differentiation of salivary gland organoids is lacking.
Here, we produce complex mouse SMG organoids derived from

E16 mouse primary epithelial and mesenchymal cells with the intent
of defining the properties of the microenvironment that are required to
stimulate and maintain proacinar differentiation. Since the percentage
of epithelial cells that are Kit+ peaks at E16 in mouse submandibular
glands (Lombaert et al., 2013; Nelson et al., 2013), and many cells
express the proacinar marker AQP5 at this stage, we used E16
epithelial clusters to generate salivary organoids. We tested the
requirement for mesenchyme in the salivary gland organoids and
demonstrate that primary salivary mesenchyme can support formation
of robust branching salivary organoids that we define as proacinar
organoids based on expression of Kit and AQP5 proteins. FGF2
expression by themesenchyme is critical for its niche function in these
organoids, but FGF2 functions in an autocrine manner and does not
stimulate the epithelium in the absence of mesenchyme. FGF2 and
laminin-111 (laminin comprising α1, β1 and γ1 chains) stimulate
branching and proacinar differentiation in salivary gland organoids in
the presence, but not in the absence, of E16 salivary mesenchyme
cells, demonstrating the importance of mesenchymal cells as a
component of the submandibular salivary proacinar cell niche.

RESULTS
Primary embryonic mesenchyme supports salivary organoid
formation with robust AQP5 expression in co-culture
To generate mouse SMG epithelial organoids, we used E16 SMGs as
a cell source since the epithelial progenitor marker Kit and the water
channel protein AQP5 are both highly enriched in the developing
proacini at this developmental stage (Lombaert et al., 2013; Nelson

et al., 2013). We performed microdissection and enzymatic
dissociation of E16 SMG followed by sequential gravity
sedimentations and filtration to enrich for multicellular clusters of
epithelial cells in the pellet and single mesenchymal cells in the
gravity supernatant (Fig. 1A). Immunocytochemistry (ICC) of the
isolated epithelial clusters demonstrated an enrichment of epithelial
cell adhesion molecule (EpCAM)-positive epithelial cells, although
vimentin-positive cells were also present as ∼4% of total cells in the
epithelial clusters (Fig. 1B). The epithelial cells within the clusters
were heterogeneous, but were enriched for cells expressing AQP5. In
AQP5+ clusters, there were also cells on the periphery that were
AQP5− and K14+. Non-AQP5+ clusters that contained cells that
express K14 and/or the ductal marker K7, were also present as
determined by ICC (Fig. S1). Of note, the AQP5+ cells were
predominantly positive for the progenitor marker Kit, as expected at
this stage of development (Fig. 1B) (Nelson et al., 2013). ICC of the
isolated single cells in the gravity supernatant demonstrated
enrichment of vimentin-positive stromal mesenchyme cells
(Fig. 1B). However, the enriched mesenchyme cell fraction was a
complex mixture of cells that also included the endogenous CD31+

(also known as PECAM1) endothelial cells and β3-tubulin+ nerve
cells (data not shown). Schematics of the cell preparation and culture
conditions as well as characterization of the starting cell populations
are shown in Fig. 1, and quantification of the cell phenotypes and
yields from experimental conditions are summarized in Table 1.

Since mesenchyme is required for branching morphogenesis
during salivary gland development (Borghese, 1950b; Grobstein,
1953; Kusakabe et al., 1985; Sequeira et al., 2010; Tucker, 2007), and
mesenchymal stromal cells are known components of stem cell
niches, we hypothesized that co-culture with salivary mesenchymal
cells would promote retention of AQP5+ secretory proacinar cells in
the E16 SMG epithelial clusters in culture. To create co-cultures of
the epithelial cell-enriched clusters with SMG mesenchyme, we first
made feeder layers using the enriched E16 primary SMG
mesenchyme in a simple 10% fetal bovine serum-containing
medium grown on top of porous polycarbonate filters. After 4 h,
epithelial clusters were added to the feeder layer. While the epithelial
clusters cultured alone in simple medium underwent an epithelial-to-
mesenchyme transition (EMT) and lost EpCAM as well as AQP5, as
determined by ICC (Fig. S2), the epithelial clusters grown on a
mesenchyme feeder layer were organized in branched structures
having high levels of AQP5 expression, which we defined as an
organoid. While only 15% of the input epithelial clusters grown in
mesenchyme feeder layer co-cultures yielded 3D-organized
organoid-like structures including EpCAM+ epithelium, 80% of
these epithelial structures expressed AQP5 (Fig. 1D–F; Table 1). Of
note, comparison with the epithelial clusters at time zero revealed that
the levels of AQP5 in organoids at day 7 are comparable to levels in
the input epithelial clusters and that AQP5 is highly membrane
localized (Fig. 1B–D). These data suggest a function formesenchyme
in expression of AQP5 in salivary organoids.

In an attempt to increase the number of epithelial organoids
produced from co-cultures, we grew co-cultures in mammary
medium since this medium is known to promote retention of
epithelial characteristics in isolated mammary cells (Debnath et al.,
2003; Soule et al., 1990). A higher degree of organized EpCAM+

epithelium was retained in co-cultures grown in mammary medium
relative to that seen in simple medium, but the percentage of
epithelial structures that were AQP5+ was lower (Fig. 1D–F;
Table 1). We then tested a 1:1 mixture of simple medium and
mammary medium, which increased the retention of EpCAM+

epithelium, but there was less AQP5+ epithelium relative to what
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was seen in simple medium, resulting in fewer AQP5+ organoids
(Fig. 1D–F; Table 1). Similarly, culture of isolated epithelial
clusters in mammary medium alone prevented EMT, and EpCAM

was retained, but not AQP5 (Fig. S2). Additionally, we observed
that 53% of AQP5+ clusters were co-positive for the progenitor
marker Kit (Fig. 1G,H) in co-cultures grown in simple medium.

Fig. 1. Co-culture of E16 salivary epithelium with E16 salivary mesenchyme promotes formation of AQP5+ Kit+ organoids. (A) Schematic of E16 SMG
subjected to enzymatic treatment using collagenase/hyaluronidase/dispase (C/H/D) followed by sequential gravity sedimentation and filtration to separate the
epithelial cell clusters frommesenchyme cells. The enriched epithelial clusters were co-culturedwithmesenchyme feeder layers on porous polycarbonate filter for
7 days. (B) ICC and confocal imaging revealed that AQP5 is membrane-localized in intact gland pieces before enzymatic digestion, but less so in epithelial
clusters that were fixed immediately after processing, as indicated by staining for the markers EpCAM (epithelium, green), AQP5 (proacinar/acinar cells, red) and
vimentin (mesenchyme, cyan), with DAPI staining (nuclei, blue). The epithelial clusters also express the progenitor marker Kit (cyan, bottom right). Individual
channels shown on the right are from boxed areas. (C) The number of epithelial clusters used per condition is reported ±s.e.m., and the ratio of epithelium to
mesenchymewithin these clusters is reported as the ratio of EpCAM to vimentin. (D) E16 epithelial clusters were grown in co-culture with primary mesenchyme or
with NIH3T3 cells in simple medium (SM), mammary medium (MM) or in a 1:1 media mix. ICC and confocal imaging revealed that, after 7 days, the epithelial
clusters co-cultured with primary mesenchyme preserve their epithelial phenotype and retain the proacinar marker AQP5, while epithelial clusters cultured with
the NIH3T3 cells lose both the epithelial and proacinar phenotype. Quantification revealed that (E) epithelial clusters were preserved best in MM and (F) AQP5
was expressed in epithelial cells co-cultured with primary mesenchyme with the highest levels observed with culture in SM. (G) The marker Kit is retained in
AQP5+ clusters after 7 days. (H) Quantitative analysis shows the percentage of AQP5+ clusters that are co-positive for the progenitor marker Kit. *P<0.05,
**P<0.01 and ***P<0.001 (one-way ANOVA with Tukey post-hoc test between each condition in E and F, and a t-test was applied to H). n=3 for all experiments
except n=5 for simple medium and 1:1 mix. Epi, epithelial clusters; Mes, mesenchyme. Scale bars: 50 μm.
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Since co-culture of epithelial cells with the NIH3T3 embryonic
fibroblast cell line has been shown to maintain albumin secretion in
rat hepatocytes (Lu et al., 2005; Nakazawa et al., 2011) and exocrine
differentiation in the pancreas (Li et al., 2004), we tested whether
co-culture with NIH3T3 cells was also sufficient to promote
salivary proacinar differentiation. However, co-culture of epithelial
clusters with NIH3T3 cells was ineffective in preserving the
epithelium (Fig. 1D,E), and in the epithelium that did persist AQP5
levels were very low (Fig. 1D,F). These results highlight the
importance of co-culture of primary salivary mesenchyme with
primary salivary epithelium to promote formation of 3D cellular
assemblies of epithelial cells that have robust AQP5 and Kit
expression, which we define as proacinar organoids.
To determine whether a soluble factor from the E16 salivary

mesenchyme could support proacinar differentiation, the
mesenchymal feeder layer was prepared in the bottom of a glass-
bottomed culture dish and grown in simple mediumwith the epithelial
clusters grown on a porous filter floating on top of the culture medium
(Fig. 2A). The epithelium was grown in Matrigel to prevent the
epithelial cells from undergoing EMT. After 7 days in culture, the
epithelium retained epithelial organization but lost AQP5 expression,
while the mesenchyme retained vimentin expression (Fig. 2B). As
putative mesenchymal soluble factors might be too dilute or unable to
penetrate the membrane, conditioned medium was collected from
primary E16 mesenchyme that had been grown in simple medium for
3 days and concentrated 10-fold (Fig. 2). After 7 days of culture in 1:1
fresh simple medium:mesenchymal cell conditioned medium (cm) in
either Matrigel or laminin-111, the primary component of Matrigel,
only a small portion of epithelial clusters were retained and the
expression of AQP5 was mostly lost (Fig. 2C–E; Table 1). Thus,
secreted soluble factors from the salivary mesenchyme are insufficient
to form proacinar organoids from salivary epithelial clusters.

FGF2 expression by the mesenchyme is required to support
salivary epithelium and proacinar differentiation in co-culture
Since FGF signaling promotes SMG branching morphogenesis and
the expansion of the epithelium in developing salivary glands

(Hoffman et al., 2002; Lombaert et al., 2013; Matsumoto et al.,
2016; Patel et al., 2006; Steinberg et al., 2005), we tested whether
FGF signaling from the mesenchyme was required in the E16 co-
cultures. Since FGF receptors are required for early branching
morphogenesis, and inhibition with SU5402, a pharmacological
inhibitor of FGF receptors, inhibits branching (Hoffman et al., 2002;
Lombaert et al., 2013; Steinberg et al., 2005), we treated co-cultures
with SU5402. The addition of SU5402 to SMG co-cultures led to a
significant loss of epithelial structure concomitant with loss of
AQP5 expression as determined by ICC (Fig. 3A–C; Table 1).
Epidermal growth factor receptor (EGFR) also promotes SMG
branching morphogenesis (Koyama et al., 2003), and is associated
with ductal development (Gresik et al., 1997; Morita and Nogawa,
1999; Nogawa and Takahashi, 1991). Accordingly, in co-cultures
treated with the EGFR inhibitor AG1478, epithelial cells were
retained and were largely AQP5+ (Fig. 3A–C; Table 1). A primary
ligand for FGFR1 and FGFR2 that is known to expand many
progenitor cell types is FGF2 (Kobayashi et al., 2016; Kojima et al.,
2011), which is primarily expressed by the SMGmesenchyme early
in development (https://sgmap.nidcr.nih.gov/) (Hoffman et al.,
2002). To knockdown FGF2 in the mesenchyme, we used lentiviral
infection of the primary mesenchyme to deliver Fgf2 shRNA or non-
targeting shRNA control. We observed a 40% decrease in FGF2
protein levels in the Fgf2 shRNA-treated mesenchyme compared to
what was seenwith negative control shRNA byELISA (Fig. 3D), and
greater knockdown using more lentivirus caused profound
mesenchymal cell death (data not shown). To determine if Fgf2
shRNA-mediated knockdown would affect epithelial proacinar
differentiation, we seeded epithelial clusters on mesenchyme feeder
layers that had been pre-treatedwithFgf2 shRNA lentiviral constructs
or negative control shRNA. In these co-cultures, we observed a
decrease in epithelium with an associated loss of AQP5 with Fgf2
shRNA relative to the controls, as determined by ICC (Fig. 3E–G;
Table 1). Thus, FGF2 expression by mesenchyme is required to
support epithelial survival and AQP5 expression in salivary gland co-
cultures.

FGF2-dependent mesenchyme promotes elaboration of
complex 3D salivary organoids containing AQP5+ secretory
proacinar cells in basement membrane extracts
We then tested whether FGF2 is sufficient to promote salivary
organoid formation with robust secretory proacinar cell differentiation
(Fig. 4A). Neither addition of FGF2 nor EGF to the epithelial clusters
in the absence of the mesenchyme feeder layer was sufficient to
promote salivary organoid formation, and the EpCAM+ epithelium
underwent an apparent EMT to form a flattened layer of largely
vimentin+ cells lacking EpCAM and AQP5 expression by ICC
(Fig. 4B), similar to epithelium cultured in simple medium without
growth factors (Fig. S2). The laminin-rich basementmembrane extract,
Matrigel, is widely used for 3D epithelial cultures and organoid studies
to facilitate epithelial cell self-organization (Baker et al., 2010;
Lombaert et al., 2017; Maimets et al., 2016; Maria et al., 2011;
Nanduri et al., 2014). To determine whether FGF2 could promote
formation of such 3D salivary organoids with robust secretory
proacinar cell differentiation, we seeded the E16 epithelial clusters in
Matrigel either with or without growth factor supplementation in
simple medium and cultured them for 7 days (Fig. 4C; Fig. S2). In
epithelial clusters cultured in either Matrigel or laminin-111 in simple
medium or mammary medium, but without additional growth factors,
epithelial spheroid architecture was retained but AQP5 expression was
lost (Fig. S2B). Importantly, epithelial clusters grown in Matrigel
supplemented with FGF2, but not EGF, were able to elaborate large,

Table 1. Quantification of epithelial and proacinar status of organoids in
specific culture conditions

Culture condition
Clusters
retained

AQP5+ EpCAM+

double-positive
organoids

Figure
number

Co-culture+SM 15±0.02 80±0.04 1D
Co-culture+MM 45±0.03 32±0.01 1D
Co-culture+1:1 media mix 28±0.04 60±0.04 1D
Epi clusters in CM 3±0.00 3±0.03 2C
Epi clusters+CM in Matrigel 20±0.03 6±0.01 2C
Epi clusters+CM in laminin-111 23±0.01 25±0.01 2C
Co-culture+SU5402 9±0.01 6±0.01 3A
Co-culture+AG1478 68±0.1 58±0.03 3A
Co-culture+FGF2 shRNA 47±0.03 4±0.01 3E
Epi clusters+FGF2 in SM 26±0.1 3±0.01 4B
Epi clusters+EGF in SM 10±0.01 0.5±0.00 4B
Epi clusters+FGF2+laminin-111 in SM 86±0.07 54±0.04 5B
Epi clusters+EGF+laminin-111 in SM 58±0.05 1±0.00 5B
Epi clusters+FGF2+Matrigel in SM 85±0.02 55±0.01 5D
Epi clusters+EGF+Matrigel in SM 140±0.08 0.1±0.01 5D
Epi clusters+FGF2+Matrigel –Mes in SM 75±0.01 10±0.04 5E

The number of organoids at 7 days relative to the number of epithelial (Epi) clusters
at time zero (t0) was counted in different culture conditions and expressed as a
percentage with s.e.m. The percentage of EpCAM+ organoids that were positive for
AQP5 is presented with s.e.m. The figure where the primary data is presented is
indicated. SM, simple medium; MM, mammary medium; CM, conditioned medium;
Mes, mesenchyme.
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complex salivary organoid structures exhibiting peripheral AQP5+

bud-like structures protruding from a central epithelial core reminiscent
of native gland structure (Fig. 4D). After 7 days in culture, the
organoids were polydisperse, with an increase in average diameter
following 7 days culture in FGF2 and EGF relative to no growth factor
supplementation, with the most enlargement detected in the presence
of EGF (Fig. 4E). Some of the EpCAM+ but AQP5− epithelial cells
expressed the ductal marker K7 and the progenitor/ductal marker
K14 (Fig. 4F), similar to the starting population (Fig. S1) (Lombaert
et al., 2013; Walker et al., 2008), illustrating the epithelial cell
complexity of the salivary organoids. Some of the K14+ but AQP5−

epithelial cells encircled AQP5+ cells, similar to in vivo proacinar
structures, but the K7+ cells were not generally well organized into
ductal-like structures (Fig. 4F). Interestingly, most of the organoid
epithelium showed robust membrane-localized expression of the
epithelial progenitor marker Kit, which largely, but not completely,
colocalized in cells with membrane-localized AQP5 (Fig. 4F),

consistent with the organoids being in a progenitor state containing
distinct Kit+ and K14+ cell populations.

To determine whether culture in laminin-111, the primary
component of Matrigel, is sufficient together with FGF2 to
promote robust proacinar organoids, we isolated enriched
epithelial clusters through gravity sedimentation and cultured
them in laminin-111 on polycarbonate filters in simple medium
containing FGF2 or EGF (Fig. 5A). High-magnification confocal
imaging of the organoids revealed high levels of AQP5 expression
comparable to that of the input E16 epithelium within the distal tips
of protrusions, demonstrating that laminin and FGF2 are sufficient
for this effect (Fig. 5B,G). Culture of enriched epithelial clusters
with FGF2, but not EGF, in Matrigel was similarly effective in
supporting epithelium and in promoting robust membrane-localized
AQP5 expression (Fig. 5D–G). These 3D organoids cultured in
laminin-rich matrix plus FGF2 were more effective than the
mesenchymal co-cultures in preserving epithelial cells and

Fig. 2. Soluble factors from primary salivarymesenchyme cannot substitute for mesenchyme cells to support AQP5 proacinar epithelial cells in culture.
(A) Schematic of initial conditions for epithelial clusters cultured without direct contact with the mesenchyme when separated by a filter or when cultured with
mesenchymal cell conditioned medium for 7 days. (B) E16 epithelial clusters grown in Matrigel on a polycarbonate filter were separated from primary mesenchyme
cells, which were seeded on a coverslip below. ICC and confocal imaging revealed loss of AQP5 expression with partial preservation of EpCAM+ epithelium after
7 days. (C) E16 epithelial clusters were grown in Matrigel or laminin-111 in the presence of concentrated conditioned medium (cm) collected from E16 primary
salivary mesenchyme. The conditioned medium (D) partially preserved the EpCAM+ epithelial phenotype in the presence of Matrigel (mat) or laminin (lam) but (E)
poorly rescued AQP5 expression, as determined by staining for the markers EpCAM (epithelium, green) and AQP5 (proacinar/acinar cells, red) with DAPI (nuclei,
blue). **P<0.01, ***P<0.001 (one-way ANOVAwith a Tukey post-hoc test was applied to determine the statistically relevant differences between each condition). n=3
experiments. Epi, epithelial clusters; Mes, mesenchyme. Scale bars: 50 μm.
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architecture with 86±0.07% (Table 1) of the input epithelium
retained in laminin-111 plus FGF2 versus only 15±0.02% of
epithelium retained in co-culture organoids. However, co-culture

was the most effective method of promoting AQP5 expression, with
55±0.01% and 54±0.04% of epithelial structures expressing AQP5
in Matrigel and laminin-111, respectively, in the presence of FGF2,

Fig. 3. Mesenchyme-dependent salivary organoid formation requires FGF2 expression by the mesenchyme. (A) E16 epithelial clusters were seeded on
primary mesenchyme feeder layers with the fibroblast growth factor receptor (FGFR) or epidermal growth factor (EGFR) inhibitors SU5402 and AG1478,
respectively, in simple medium and were examined by ICC and confocal imaging. Quantitative analysis revealed loss of (B) epithelial EpCAM and (C) proacinar
AQP5 protein expression with FGFR inhibition but not EGFR inhibition. (D) E16 mesenchyme cells were infected with lentiviral constructs expressing non-
targeting (NT) shRNA or FGF2-targeting shRNA. An ELISA using cell lysates demonstrated a decline in FGF2 protein levels in mesenchymal cells infected with
shRNA. (E) E16 epithelium was co-cultured with mesenchyme following lentiviral treatment with NT or FGF2 shRNA for 7 days. ICC and confocal imaging
revealed (F) a decline in the epithelial population and (G) loss of proacinar differentiation, as shown by staining for the markers EpCAM (epithelium, green), AQP5
(proacinar/acinar cells, red) and vimentin (mesenchyme, cyan) with DAPI (nuclei, blue). *P<0.05, **P<0.01, ***P<0.001 (one-way ANOVA with Tukey post-hoc
test between each condition for B–D; Student’s t-test for F,G). n=3 experiments. Scale bars: 50 μm.
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but 80±0.04% of the co-culture organoids expressing AQP5
(Fig. 5F,G; Table 1).
Interestingly, we noted that the vimentin-positive mesenchymal

cells present in the 3D organoids expanded concomitantly with the
epithelium in the presence of FGF2 (Fig. 5D), and we questioned
whether these cells are required to form proacinar organoids in the
presence of FGF2 and a laminin-rich matrix. To determine whether
the presence of mesenchyme is required for proacinar organoid
formation, we used differential adhesion-based depletion to remove
the more-adherent mesenchyme from the enriched epithelial cell
clusters to make purified epithelial clusters (Fig. 5A). Strikingly,
mesenchyme-depleted, purified epithelial clusters grown in
Matrigel and supplemented with FGF2 formed spheroids with
smooth surfaces similar to those in the input clusters, and lacked the
buds present in the enriched epithelial cell clusters that were grown

in Matrigel with FGF2 for 7 days (Fig. 5C). The spheroids derived
from purified epithelial clusters retained epithelial characteristics
and were positive for EpCAM but were nearly devoid of AQP5,
similar to EGF-supplemented cultures (Fig. 5E–G; Table 1),
indicating that FGF2 cannot compensate for the presence of
mesenchyme. Taken together, these data indicate that FGF2
functions indirectly through the mesenchyme to promote salivary
organoid morphogenesis and AQP5 expression in the organoids,
demonstrating a critical function for mesenchyme cells in the
FGF2-dependent elaboration of complex salivary organoids.

DISCUSSION
Despite early indications that the differentiation of the salivary
gland epithelium is autonomous (Cutler, 1980; Denny et al., 1997),
by using ex vivo culture of primary cells, we demonstrate a

Fig. 4. FGF2 promotes elaboration of complex 3D salivary organoids in basement membrane. (A) Schematic of initial condition for epithelial clusters
cultured with growth factors. (B) E16 epithelial clusters were seeded on porous polycarbonate filters floating on simple medium containing FGF2 or EGF.
(C) Schematic of epithelial clusters cultured in basement membrane extract with growth factors. (D) Epithelial clusters were cultured in Matrigel with FGF2 or EGF.
ICC and confocal imaging revealed that after 7 days, the EpCAM+ epithelium is partially maintained with an increase in vimentin+ mesenchyme cells with growth
factors, while epithelial clusters grown in Matrigel with FGF2 form complex EpCAM+ epithelial organoids with budded structures expressing AQP5. Staining was
for EpCAM (epithelium, green), AQP5 (proacinar/acinar cells, red) and vimentin (mesenchyme, cyan) with DAPI (nuclei, blue). (E) Quantitative analysis shows the
mean diameter for the epithelial clusters with or without growth factors in Matrigel. (F) Organoids were analyzed for the basal cell marker K14, the apical ductal cell
marker K7 and the progenitor cell marker Kit in epithelial clusters after 7 days embedded in Matrigel with FGF2. Staining was for AQP5 (proacinar/acinar cells,
red), K14 (basal, cyan), K7 (ductal, cyan) and Kit (progenitor, cyan) with DAPI (nuclei, blue). **P<0.01, ***P<0.001 (one-way ANOVA with Tukey post-hoc test
between each condition). n=3 experiments. Scale bars: 50 μm.
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requirement for mesenchymal cells to support formation of complex
salivary organoids. Co-culture of E16 mouse salivary epithelium
highly enriched in Kit+ progenitors with E16 salivary mesenchyme
sustained epithelial architecture and supported robust expression of
the proacinar marker AQP5 that is comparable to what is seen in the

native tissue and that had appropriate membrane localization. FGF2
expression by the mesenchymal cells was required for AQP5 and
Kit expression in organoids. FGF2 promoted elaboration of
complex organoids with robust AQP5 epithelial expression only
when grown in either 3D Matrigel or polymerized laminin-111,

Fig. 5. Complex laminin and FGF2-dependent salivary proacinar organoids requiremesenchymal cells. (A) Schematic demonstrating isolation and culture of
enriched or purified E16 epithelial clusters. GF, growth factor. (B) E16 enriched epithelial clusters were seeded in laminin-111 on porous polycarbonate filters
floating on simple medium containing either FGF2 or EGF. (C) Brightfield images show enriched epithelial clusters or purified epithelial clusters after mesenchyme
depletion cultured in Matrigel with FGF2 for 7 days. (D,E) E16 enriched epithelial clusters or E16 purified epithelial clusters (-Mes) were seeded in Matrigel
and grown with FGF2. Laminin-111, FGF2 and mesenchyme when together lead to AQP5 expression being retained in organoids, as shown by staining for the
markers EpCAM (epithelium, green), AQP5 (proacinar/acinar cells, red) and vimentin (mesenchyme, cyan) with DAPI (nuclei, blue). Quantitative analysis
demonstrates (F) EpCAM is variably preserved in all conditions, while (G) AQP5 is retained with FGF2 and basement membrane only when mesenchyme is also
present. *P<0.05, **P<0.01, ***P<0.001 (one-way ANOVAwith Tukey post-hoc test between each condition). n=3 experiments. Scale bars: 50 μm (B,D); 200 μm (C).
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both of which are known to preserve the 3D architecture and
polarity of epithelial cells (Baker et al., 2010; Cantara et al., 2012;
Daley et al., 2012; Debnath et al., 2003; Maria et al., 2011).
Strikingly, FGF2-dependent 3D growth of epithelium in laminin or
laminin-rich basement membrane required mesenchymal cells to
support complex salivary organoid formation, suggesting that FGF2
functions in an autocrine manner on the mesenchyme itself.
Although laminin-111 directly stimulated epithelial architecture,
neither FGF2 nor mesenchymal soluble factors could substitute for
the presence of mesenchyme cells. We conclude that basement
membrane proteins and other non-soluble factors produced by
FGF2-dependent mesenchyme cells function as niche factors for
salivary organoids that are both AQP5+ and Kit+.
Indeed, many organoid and co-culture studies have reported variable

requirements for mesenchyme signaling to support epithelial
progenitor cells and differentiation ex vivo (Chou et al., 2016; Hegab
et al., 2015; Wells et al., 2013). Of particular note, in some studies,
soluble factors can substitute for mesenchyme to promote some
epithelial characteristics (Rebustini andHoffman, 2009; Sequeira et al.,
2010; Steinberg et al., 2005) and other studies demonstrate a
requirement for direct contact of the mesenchyme to support
epithelial differentiation (Duss et al., 2014; Lee et al., 2014; Li et al.,
2004; Park et al., 2014). FGF signaling is required for development of
salivary glands and other branched organs (Hoffman et al., 2002;
Lombaert et al., 2013;Miralles et al., 1999; Patel et al., 2006; Steinberg
et al., 2005; Zhang et al., 2014); however, the cell types that require
FGF signaling are incompletely understood. FGF2 is known to be a
mitogen for human mesenchymal stem cells, and upon shRNA-
mediated FGF2 knockdown in the salivary mesenchyme, we observed
fewer mesenchyme cells relative to the control vector-treated cells,
consistent with an autocrine function for FGF2 in the mesenchyme.
FGF2 treatment of the mesenchyme is required for production of
soluble factors to support epithelial human embryonic stem cells
(hESCs) cultured on mouse embryonic fibroblasts (MEFs) (Greber
et al., 2007; Lotz et al., 2013). However, in this study soluble factors
produced by the mesenchyme incompletely supported the proacinar
organoids. Inmany tissues, including salivary glands, themesenchyme
cooperates with the epithelium for production and assembly of the
basement membrane (Ekblom et al., 1994; Keely et al., 1995; Nelson
and Larsen, 2015; Yurchenco, 2011). Given that FGF2 expression by
the mesenchyme is required for epithelial proacinar differentiation in
the co-cultures, and that neitherMatrigel nor laminin-111 together with
exogenous FGF2 could substitute for the mesenchyme to promote
AQP5 expression, our results suggest that FGF2 may be required for
mesenchymal potency, functioning through an unknown factor that
synergizes with signaling initiated by laminin-111.
In both of our assay systems, the robust AQP5+ proacinar

organoids include well-organized vimentin-positive mesenchymal
cells surrounding the epithelium, similar to in the native SMG
architecture. Mesenchyme is an important feature of the organoids
as it promotes the complex budded epithelial structure and supports
the high-level membrane-localized expression of AQP5 in these
buds. Indeed, many organoids have been shown to contain
mesenchyme, particularly embryonic and induced pluripotent
stem cell (iPSC)-derived organoids (Dye et al., 2015; Hegab
et al., 2015; McQualter et al., 2010; Shamir and Ewald, 2014;
Teisanu et al., 2011). Matrigel or laminin have also been used for
adult SMG progenitor cell expansion in complex growth factor-
containing media for formation of organoids with some level of
AQP5 expression (Maimets et al., 2016; Nanduri et al., 2014). Since
a mesenchymal component has not yet been reported in salivary
organoids derived from adult stem or progenitor cells, this presents

an important opportunity to increase the organization and secretory
capacity of such organoids in future studies. Our studies revealed
that E16 mesenchyme, but not NIH3T3 cells, were permissive to
support epithelial survival and organization with robust AQP5
expression and organization. A recent report used hair follicle-
derived mesenchyme in co-culture with adult SMG epithelium
(Maruyama et al., 2015), although this mesenchymal population did
not support the elaboration of well-organized proacinar epithelia as
did the E16 mesenchyme in our studies. Another recent report used
bone marrow mesenchymal stem cells (MSCs) or the native E13
mesenchyme to support branching morphogenesis of isolated E13
SMG epithelium; while the MSC could support minimal epithelial
development it was vastly inferior to the native E13 mesenchyme
(Farahat et al., 2017). These studies are consistent with our findings
that native salivary mesenchyme supports maintenance of AQP5+

Kit+ cells and morphogenesis of salivary organoids.
Themicroenvironment provided by the native salivarymesenchyme

encompasses multiple factors that could facilitate organoid formation:
heterotypic cell–cell interactions, extracellular matrix (ECM), and
secretedmorphogens (Bhat and Bissell, 2014). Direct heterotypic cell–
cell interactions in which one cell provides the receptor and the other
cell provides the cognate ligand, known as juxtacrine signaling, is one
potential mechanism through which the mesenchyme could support
the proacinar cells (Bhatia et al., 1999). The ECM and basement
membrane can alter cellular motility and control stem cell quiescence,
proliferation and cell fate (Engler et al., 2007; Gattazzo et al., 2014).
The ECM composition and its 3D structure largely controls the
viscoelasticity of the microenvironment (Discher et al., 2009; Engler
et al., 2007). Studies by our laboratory and others have demonstrated
that compliance of the microenvironment is required for the
development and differentiation of salivary gland organ explants
(Miyajima et al., 2011; Peters et al., 2014). Although our results here
show that Matrigel is insufficient to support the proacinar cells,
extracellular matrix proteins elaborated by and organized by the E16
mesenchyme may provide critical signals to support the proacinar
cells. Finally, paracrine-acting growth factors regulate stem cell
behavior (Saraswati et al., 2012). As conditioned medium provided by
mesenchyme cells was insufficient to rescue proacinar organoids in the
absence of the mesenchyme cells themselves, a secreted mesenchymal
morphogen is clearly insufficient. However, we cannot exclude
synergistic signaling that could result from paracrine-acting
morphogens together with matrix proteins and/or juxtacrine
signaling as the required components of the mesenchymal niche in
salivary organoids.

Organoids hold promise for applications in regenerative
medicine, and bioengineered organoids have been used to
partially restore salivary gland organ function in vivo in a mouse
organ replacement model (Ogawa et al., 2013). Since loss of the
salivary gland secretory acinar cell population is common to both
autoimmune- and radiation-induced xerostomia, or dry mouth,
efforts have been focused on augmenting secretory acinar cell
differentiation in vitro and in vivo and characterizing signaling
pathways that enhance or sustain secretory acinar cell differentiation
(Kobayashi et al., 2016; Kojima et al., 2011; Lim et al., 2013;
Ogawa et al., 2013; Sumita et al., 2011; Thula et al., 2005).
Significantly, both MSCs and FGF2 have been shown to promote
restoration of salivary function in disease models, where damage to
the mesenchyme contributes to impairment of gland function
(Khalili et al., 2012; Kobayashi et al., 2016; Kojima et al., 2011;
Lim et al., 2013; Lombaert et al., 2017; Sumita et al., 2011; Thula
et al., 2005). Thus, future studies will need to define the critical
features of the mesenchyme cells that makes them competent to
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produce a microenvironment that stimulates or supports secretory
acinar cell differentiation. With this knowledge, future regenerative
therapies could be designed to augment the potency of clinically
relevant mesenchyme, such as MSCs for cell therapy, or employ
growth factor-mediated restoration of endogenous mesenchyme
potency in salivary hypofunction conditions.

MATERIALS AND METHODS
Isolation of primary cells from mouse submandibular glands
Timed-pregnant CD-1 female mice were obtained from Charles River
Laboratories. E16 mouse submandibular glands (SMGs) were collected
according to the animal protocols approved by the University at Albany
Institutional Animal Care and Use Committee (IACUC) by first removing the
mandible slice with sharp scalpels and then removing the glands from the slice
with sterile forceps under a dissecting microscope. To prepare epithelial
clusters, SMGs were microdissected in 1× phosphate-buffered saline (PBS,
Life Technologies) with 1× collagenase/hyaluronidase (Stem Cell
Technologies, #7912) and 0.8 U/ml of dispase II (Life Technologies,
#17105041) to release E16 lobules. The lobules were incubated at 37°C for
30 min with further trituration to generate both epithelial clusters and single
mesenchyme cells. The enzymatic reaction was stopped by addition of 1:1
DMEM/F12 (Life Technologies, 11039047) containing 10% fetal bovine
serum (FBS; Life Technologies). Cell populations were separated by gravity
sedimentation for ∼5 min until the larger epithelial clusters formed a loose
pellet. Epithelial clusters from this pellet were enriched with two additional
gravity sedimentations. The remainingmesenchyme cell population underwent
additional steps to enrich for single mesenchymal cells, including two gravity
sedimentations followed by passage through cell strainers having pores of
70 µm (Falcon, #087712) and 40 µm (Fisher Scientific, #22363547) diameter.

Epithelial cell culture and media components
Epithelial clusters (derived from 2.5 glands, ∼2×104 cells in 380 clusters)
were seeded on 0.1 μm pore size porous polycarbonate filters (Nuclepore,
Whatman #0930051) and floated on top of 200 µl media in 50 mm glass-
bottom dishes (MatTek #P50G-1.5-14F). Media used include: DMEM/F12
with 10% FBS supplemented with 100 U/ml penicillin and 100 mg/ml
streptomycin (Pen-Strep, Life Technologies), which is referred to here as
‘simple medium (SM)’, a mammary epithelial medium that was developed
for MCF-10A mammary epithelial cells (Debnath et al., 2003; Soule et al.,
1990) that includes 5% horse serum (Invitrogen), 20 ng/ml EGF
(PeproTech, #AF100-15), 1.25 μg/ml hydrocortisone (Sigma, #H0135),
100 ng/ml cholera toxin (Sigma, #C8052), 10 μg/ml insulin (Sigma, #I882)
and penicillin-streptomycin (Life Technologies) and is referred to as
‘mammary medium (MM)’. Growth factors [FGF2, Peprotech #450-33, and
EGF, Peprotech, AF-100-15] were solubilized in medium containing 0.2%
BSA and stored at −20°C in single-use aliquots prior to use.

Co-culture of epithelial clusters with mesenchymal cells
Primary E16 mesenchyme cells (derived from five glands, ∼1.1×106 cells)
were seeded on Nuclepore filters in theMatTek dishes in simple medium for
4 h to generate a feeder layer. Epithelial clusters (derived from 2.5 glands,
approximately 2×104 cells in 380 clusters) were plated on top of the
mesenchyme feeder layer. Media conditions included simple medium,
mammary medium and a 1:1 ratio of mammary medium:simple medium.
The NIH3T3 immortalized embryonic fibroblast cell line was grown in
simple medium for 4 h on a Nuclepore filter (1.1×106 cells) to generate a
feeder layer followed by addition of E16 primary epithelial clusters. For
indirect co-culture of epithelial clusters with mesenchyme, mesenchyme
cells were seeded as a feeder layer in the bottom of a 0.1% gelatin-coated
MatTek dish in simple medium with the epithelial clusters embedded in
Matrigel on a Nuclepore filter and cultured for up to 7 days.

Epithelial clusters with mesenchyme conditioned medium with
or without basement membrane extract
Mesenchymal conditioned medium was collected from E16 primary
mesenchyme seeded on 0.1% gelatin-coated (Millipore #ES-006B) tissue

culture plates (Corning) that was grown for three days. The conditioned
medium was further concentrated using Amicon Ultra-4 Centrifugal Filters
3 K (Millipore #UFC800308) to a 10-fold concentrate. Concentrated
conditioned medium was mixed 1:1 with simple medium (DMEM/F12
+10% FBS) for culturing. Epithelial clusters (from 2.5 glands) were seeded
on Nuclepore filters or embedded in either Matrigel (Corning #CB40230) or
laminin-111 (Trevigen #3446-005-01) at a ratio of 1:1 with mesenchymal
conditioned medium and cultured for 7 days.

Growth factor receptor inhibitors in E16 co-cultures
Primary E16 mesenchyme cells (approximately 1.1×106 cells/ml) were
seeded on Nuclepore filters in MatTek dishes in simple medium for 4 h.
Epithelial clusters (from 2.5 glands) were plated on top of the mesenchyme
and grown for up to 7 days. FGFR and EGFR inhibitors were used as
previously reported for SMG cultures (Hoffman et al., 2002; Mizukoshi
et al., 2016). The FGFR inhibitor SU5402 (Sigma #SML0443) was
solubilized in DMSO and used at a final concentration of 5 µM and the
EGFR inhibitor AG1478 (Tocris #1276) was solubilized in DMSO and used
at a 10 µM final concentration.

Lentiviral FGF2 shRNA knockdown in E16 primary mesenchyme
E16 primary mesenchymewas seeded in 96-well plates and transduced with
lentiviral shRNA control (SHC-002V) or shRNA FGF2 lentivirus particles
(Mission TRC-Sigma #SHCLNV-NM-008006; TRCN00000-67283),
according to the manufacturer’s recommendations. At 72 h after infection,
cell lysates were made using RIPA buffer (Thermo Fisher Scientific,
PI89900) with complete mini EDTA-free protease inhibitor cocktail (Roche,
#11836170001). FGF2 ELISA (R&D Systems #MFB00) with cell lysates
was performed according to the manufacturer’s instructions to determine the
level of FGF2 knockdown in the mesenchyme cells. For co-cultures, E16
primary mesenchyme was seeded on a Nuclepore filter and transduced with
the shRNA lentiviruses. After 7 days, freshly isolated E16 epithelial clusters
were added to the mesenchyme and cultured for an additional 7 days.

Culture of epithelial clusters in basement membrane extract
with or without mesenchymal growth factors
For culture, enriched epithelial clusters (from 2.5 glands) were embedded in
either Matrigel or laminin-111 (Trevigen #3446-005-01) at a ratio of 1:1 and
placed on Nuclepore filters in MatTek dishes floating on simple medium
(SM) containing FGF2 (100 ng/ml) or EGF (100 ng/ml). The organoids
were grown for up to 14 days. For experiments lacking basement membrane,
epithelial clusters were placed directly on the filter and grown for 7 days. To
analyze marker expression at time 0 (t0, before culture), primary E16
enriched epithelial clusters (from 2.5 glands) in medium were embedded in
Matrigel at a ratio of 1:1 (Matrigel:medium) and plated on Nuclepore filters
in MatTek dishes and incubated for 20 min at 37°C to solidify the Matrigel
before fixation.

Differential adhesion to generate purified epithelial clusters
E16 epithelial clusters were seeded in a 35 mm dish for up to 2 h to deplete
mesenchyme cells from epithelial clusters. After 2 h, floating epithelial
clusters were removed by performing gentle trituration of themedium, leaving
the adherent mesenchyme cells attached to the dish. The mesenchyme-
depleted epithelial clusters (from 2.5 glands) were embedded in Matrigel at a
ratio of 1:1 and placed on Nuclepore filters in MatTek dishes in simple
medium containing the growth factor FGF2 (100 ng/ml) and cultured for
7 days.

Immunocytochemistry and confocal imaging
SMG cell cultures in various configurations that were grown on Nuclepore
filters were fixed with 4% paraformaldehyde (Electron Microscopy
Sciences) in 1× PBS for 20 min or overnight, depending upon the culture
conditions. Immunocytochemistry (ICC) was performed as described
previously (Daley et al., 2009; Sequeira et al., 2012), except that 0.4%
Triton X-100 (Sigma) was used for permeabilization. All of the primary and
secondary antibody incubations were performed overnight at 4°C. Primary
antibodies used were against: AQP5 (1:400; Alomone #AQP-005),
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EpCAM–FITC (1:400; eBiosciences #11-5791-82), vimentin (1:1000;
Sigma #V2258), cytokeratin 14 (K14) (1:600; BioLegend #906001),
cytokeratin 7 (K7) (1:200; Abcam #9021) and Kit (1:200; R&D Systems
#AF1356). Secondary antibodies including Cyanine- and Alexa dye-
conjugated AffiniPure F(ab′)2 fragments were all purchased from Jackson
ImmunoResearch Laboratories and used at a dilution of 1:250. DAPI (Life
Technologies, #D1306) was used for nuclei staining. Nuclepore filters were
mounted on glass slides using Fluorogel with Tris buffer mounting medium
(ElectronMicroscopy Sciences, #17985-11). Imaging was performed with a
Leica TCS SP5 confocal microscope at 20× and 63× (oil immersion) or a
Zeiss 710 confocal microscope at 40× (oil immersion) magnification using
the same laser configurations for all samples within an experiment.

Image analysis and quantification
Images were acquired for quantitative analysis by using the tile scan function
with 20× magnification on the Leica SP5 microscope, in order to analyze the
entire area of each sample. Quantitative analysis of spheroids for marker
expression was performed by using the MetaMorph (Version 6.1, MDS
Analytical Technologies) program. The total number of spheroids positive for
the epithelial marker EpCAMwas manually counted and recorded manually.
If EpCAM+ spheroids showed more than 30% (by area) of the proacinar
marker AQP5 expression, they were considered to be an AQP5+ organoid.
Positively stained areas (μm2) for EpCAM, AQP5 or vimentin markers were
quantified by using calibrated and thresholded images using ImageJ software
(Abràmofff et al., 2005), as we performed previously (Gervais et al., 2015).
Organoid diameter was measured from calibrated images with ImageJ
software. Data was graphed in Microsoft Excel with the standard error of
mean (s.e.m.). One-way ANOVA tests and Student’s two-tailed t-tests were
carried out in Vassar-Stats (http://vassarstats.net/) with a Tukey post-hoc test.
P<0.05 was considered to be statistically significant. At least three
experiments were quantified to generate each graph with one or two
samples per experiment measured unless otherwise noted.
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