171 research outputs found

    Analysis of refill curve shape in ultrasound contrast agent studies

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135021/1/mp9534.pd

    Extended envelopes around Galactic Cepheids III. Y Oph and alpha Per from near-infrared interferometry with CHARA/FLUOR

    Full text link
    Unbiased angular diameter measurements are required for accurate distances to Cepheids using the interferometric Baade Wesselink method (IBWM). The precision of this technique is currently limited by interferometric measurements at the 1.5% level. At this level, the center-to-limb darkening (CLD) and the presence of circumstellar envelopes (CSE) seem to be the two main sources of bias. The observations we performed aim at improving our knowledge of the interferometric visibility profile of Cepheids. In particular, we assess the systematic presence of CSE around Cepheids in order determine accurate distances with the IBWM free from CSE biased angular diameters. We observed a Cepheid (Y Oph) for which the pulsation is well resolved and a non-pulsating yellow supergiant (alpha Per) using long-baseline near-infrared interferometry. We interpreted these data using a simple CSE model we previously developed. We found that our observations of alpha Per do not provide evidence for a CSE. The measured CLD is explained by an hydrostatic photospheric model. Our observations of Y Oph, when compared to smaller baseline measurements, suggest that it is surrounded by a CSE with similar characteristics to CSE found previously around other Cepheids. We have determined the distance to Y Oph to be d=491+/-18 pc. Additional evidence points toward the conclusion that most Cepheids are surrounded by faint CSE, detected by near infrared interferometry: after observing four Cepheids, all show evidence for a CSE. Our CSE non-detection around a non-pulsating supergiant in the instability strip, alpha Per, provides confidence in the detection technique and suggests a pulsation driven mass-loss mechanism for the Cepheids.Comment: accepted for publication in Ap

    UVSat: a concept of an ultraviolet/optical photometric satellite

    Full text link
    Time-series photometry from space in the ultraviolet can be presently done with only a few platforms, none of which is able to provide wide-field long-term high-cadence photometry. We present a concept of UVSat, a twin space telescope which will be capable to perform this kind of photometry, filling an observational niche. The satellite will host two telescopes, one for observations in the ultraviolet, the other for observations in the optical band. We also briefly show what science can be done with UVSat.Comment: 6 pages, 2 figures, accepted for publication in the Proceedings of the PAS (Proc. of the 2nd BRITE Science conference, Innsbruck

    Period and light curve fluctuations of the Kepler Cepheid V1154 Cyg

    Get PDF
    We present a detailed period analysis of the bright Cepheid-type variable star V1154 Cygni (V =9.1 mag, P~4.9 d) based on almost 600 days of continuous observations by the Kepler space telescope. The data reveal significant cycle-to-cycle fluctuations in the pulsation period, indicating that classical Cepheids may not be as accurate astrophysical clocks as commonly believed: regardless of the specific points used to determine the O-C values, the cycle lengths show a scatter of 0.015-0.02 days over the 120 cycles covered by the observations. A very slight correlation between the individual Fourier parameters and the O-C values was found, suggesting that the O - C variations might be due to the instability of the light curve shape. Random fluctuation tests revealed a linear trend up to a cycle difference 15, but for long term, the period remains around the mean value. We compare the measurements with simulated light curves that were constructed to mimic V1154 Cyg as a perfect pulsator modulated only by the light travel time effect caused by low-mass companions. We show that the observed period jitter in V1154 Cyg represents a serious limitation in the search for binary companions. While the Kepler data are accurate enough to allow the detection of planetary bodies in close orbits around a Cepheid, the astrophysical noise can easily hide the signal of the light-time effect.Comment: published in MNRAS: 8 pages, 7 figure

    An RR Lyrae family portrait: 33 stars observed in Pisces with K2-E2

    Get PDF
    A detailed analysis is presented of 33 RR Lyrae stars in Pisces observed with the Kepler space telescope over the 8.9-day long K2 Two-Wheel Concept Engineering Test. The sample includes not only fundamental-mode and first overtone (RRab and RRc) stars but the first two double-mode (RRd) stars that Kepler detected and the only modulated first-overtone star ever observed from space so far. The precision of the extracted K2 light curves made it possible to detect low-amplitude additional modes in all subtypes. All RRd and non-modulated RRc stars show the additional mode at PX /P1 ∼ 0.61 that was detected in previous space-based photometric measurements. A periodicity longer than the fundamental mode was tentatively identified in one RRab star that might belong to a gravity mode. We determined the photometric [Fe/H] values for all fundamental-mode stars and provide the preliminary results of our efforts to fit the double-mode stars with non-linear hydrodynamic pulsation models. The results from this short test run indicate that the K2 mission will be, and has started to be, an ideal tool to expand our knowledge about RR Lyrae stars. As a by-product of the target search and analysis, we identified 165 bona-fide double-mode RR Lyrae stars from the Catalina Sky Survey observations throughout the sky, 130 of which are new discoveries

    Mean angular diameters, distances and pulsation modes of the classical Cepheids FF Aql and T Vul - CHARA/FLUOR near-infrared interferometric observations

    Full text link
    We report the first angular diameter measurements of two classical Cepheids, FF Aql and T Vul, that we have obtained with the FLUOR instrument installed at the CHARA interferometric array. We obtain average limb-darkened angular diameters of \theta_LD = 0.878 +/- 0.013 mas and \theta_LD = 0.629 +/- 0.013 mas, respectively for FF Aql and T Vul. Combining these angular diameters with the HST-FGS trigonometric parallaxes leads to linear radii R = 33.6 +/- 2.2 Rsol and R = 35.6 +/- 4.4 Rsol, respectively. The comparison with empirical and theoretical Period-Radius relations leads to the conclusion that these Cepheids are pulsating in their fundamental mode. The knowledge of the pulsation mode is of prime importance to calibrate the Period-Luminosity relation with a uniform sample of fundamental mode Cepheids

    The pulsating hot subdwarf Balloon 090100001: results of the 2005 multisite campaign

    Full text link
    We present the results of a multisite photometric campaign on the pulsating sdB star Balloon 090100001. The star is one of the two known hybrid hot subdwarfs with both long- and short-period oscillations. The campaign involved eight telescopes with three obtaining UBVR data, four B-band data, and one Stromgren uvby photometry. The campaign covered 48 nights, providing a temporal resolution of 0.36microHz with a detection threshold of about 0.2mmag in B-filter data. Balloon 090100001 has the richest pulsation spectrum of any known pulsating subdwarf B star and our analysis detected 114 frequencies including 97 independent and 17 combination ones. The strongest mode (f_1) in the 2.8mHz region is most likely radial while the remaining ones in this region form two nearly symmetric multiplets: a triplet and quintuplet, attributed to rotationally split \ell=1 and 2 modes, respectively. We find clear increases of splitting in both multiplets between the 2004 and 2005 observing campaigns, amounting to 15% on average. The observed splittings imply that the rotational rate in Bal09 depends on stellar latitude and is the fastest on the equator. We use a small grid of models to constrain the main mode (f_1), which most likely represents the radial fundamental pulsation. The groups of p-mode frequencies appear to lie in the vicinity of consecutive radial overtones, up to the third one. Despite the large number of g-mode frequencies observed, we failed to identify them, most likely because of the disruption of asymptotic behaviour by mode trapping. The observed frequencies were not, however, fully exploited in terms of seismic analysis which should be done in the future with a larger grid of reliable evolutionary models of hot subdwarfs.Comment: accepted for publication in MNRA
    corecore