18 research outputs found

    Species distribution and in vitro antifungal susceptibility of oral yeast isolates from Tanzanian HIV-infected patients with primary and recurrent oropharyngeal candidiasis

    Get PDF
    \ud In Tanzania, little is known on the species distribution and antifungal susceptibility profiles of yeast isolates from HIV-infected patients with primary and recurrent oropharyngeal candidiasis. A total of 296 clinical oral yeasts were isolated from 292 HIV-infected patients with oropharyngeal candidiasis at the Muhimbili National Hospital, Dar es Salaam, Tanzania. Identification of the yeasts was performed using standard phenotypic methods. Antifungal susceptibility to fluconazole, itraconazole, miconazole, clotrimazole, amphotericin B and nystatin was assessed using a broth microdilution format according to the guidelines of the Clinical and Laboratory Standard Institute (CLSI; M27-A2). Candida albicans was the most frequently isolated species from 250 (84.5%) patients followed by C. glabrata from 20 (6.8%) patients, and C. krusei from 10 (3.4%) patients. There was no observed significant difference in species distribution between patients with primary and recurrent oropharyngeal candidiasis, but isolates cultured from patients previously treated were significantly less susceptible to the azole compounds compared to those cultured from antifungal naĂŻve patients. C. albicans was the most frequently isolated species from patients with oropharyngeal candidiasis. Oral yeast isolates from Tanzania had high level susceptibility to the antifungal agents tested. Recurrent oropharyngeal candidiasis and previous antifungal therapy significantly correlated with reduced susceptibility to azoles antifungal agents.\u

    In vitro neuroprotective potential of four medicinal plants against rotenone-induced toxicity in SH-SY5Y neuroblastoma cells

    Get PDF
    BACKGROUND: Lannea schweinfurthii, Zanthoxylum capense, Scadoxus puniceus and Crinum bulbispermum are used traditionally to treat neurological disorders. The aim of this study was to evaluate the cytoprotective potential of the four plants, after induction of toxicity using rotenone, in SH-SY5Y neuroblastoma cells. METHODS: Cytotoxicity of the plant extracts and rotenone was assessed using the sulforhodamine B (SRB) assay. Fluorometry was used to measure intracellular redox state (reactive oxygen species (ROS) and intracellular glutathione content), mitochondrial membrane potential (MMP) and caspase-3 activity, as a marker of apoptotic cell death. RESULTS: Of the tested plants, the methanol extract of Z. capense was the least cytotoxic; LC(50) 121.3 ± 6.97 μg/ml, while S. puniceus methanol extract was the most cytotoxic; LC(50) 20.75 ± 1.47 μg/ml. Rotenone reduced intracellular ROS levels after 24 h exposure. Pre-treating cells with S. puniceus and C. bulbispermum extracts reversed the effects of rotenone on intracellular ROS levels. Rotenone exposure also decreased intracellular glutathione levels, which was counteracted by pre-treatment with any one of the extracts. MMP was reduced by rotenone, which was neutralized by pre-treatment with C. bulbispermum ethyl acetate extract. All extracts inhibited rotenone-induced activation of caspase-3. CONCLUSION: The studied plants demonstrated anti-apoptotic activity and restored intracellular glutathione content following rotenone treatment, suggesting that they may possess neuroprotective properties

    Brine Shrimp Toxicity Evaluation of Some Tanzanian Plants Used Traditionally for the Treatment of Fungal Infections

    Get PDF
    Plants which are used by traditional healers in Tanzania have been evaluated to obtain preliminary data of their toxicity using the brine shrimps test. The results indicate that 9 out of 44 plant species whose extracts were tested exhibited high toxicity with LC50 values below 20µg/ml. These include Aloe lateritia Engl. (Aloaceae) [19.1µg/ml], Cassia abbreviata Oliv. (Caesalpiniaceae) [12.7µg/ml], Croton scheffleri Pax (Euphorbiaceae) [13.7µg/ml], Hymenodactyon parvifolium Brig (Rubiaceae) [13.4µg/ml], Kigelia Africana L. (Bignoniaceae) [7.2µg/ml], and Ocimum suave Oliv. (Labiatae) [16.7µg/ml]. Twelve plants gave LC50 values between 21 and 50µg/ml, 11 plants gave LC50 values between 50 and 100 µg/ml, and 18 plants gave LC50 values greater than 100 µg/ml
    corecore