1,829 research outputs found

    A Study of Abcission Zone Development In Leaves of Ginkgo Biloba L.

    Get PDF
    The development of the leaf abscission zone in Ginkgo biloba trees and seedlings was studied. Leaves from Ginkgo seedlings were debladed to enhance anatomical changes in the abscission region. The development of an abscission layer was observed six days after deblading. The formation of the zone was not complete, but an abaxial to adaxial pattern of development was apparent. No evidence of separation was noted. Debladed Ginkgo petioles remained green and did not abscise during the six weeks period of study. The development of an abscission layer was observed in leaves from a Ginkgo tree one week prior to separation. The zone occupied an area approximately eleven cells wide at the junction of the petiole and stem. Separation of the petiole occurred through an apparent dissolution of the middle lamella. The separation was observed in the distal region of the zone between the ninth and tenth cell layers. The pattern of leaf abscission zone development is similar in Ginkgo trees and seedlings

    A Mutation in the Myostatin Gene Increases Muscle Mass and Enhances Racing Performance in Heterozygote Dogs

    Get PDF
    Double muscling is a trait previously described in several mammalian species including cattle and sheep and is caused by mutations in the myostatin (MSTN) gene (previously referred to as GDF8). Here we describe a new mutation in MSTN found in the whippet dog breed that results in a double-muscled phenotype known as the “bully” whippet. Individuals with this phenotype carry two copies of a two-base-pair deletion in the third exon of MSTN leading to a premature stop codon at amino acid 313. Individuals carrying only one copy of the mutation are, on average, more muscular than wild-type individuals (p = 7.43 × 10−6; Kruskal-Wallis Test) and are significantly faster than individuals carrying the wild-type genotype in competitive racing events (Kendall's nonparametric measure, τ = 0.3619; p ≈ 0.00028). These results highlight the utility of performance-enhancing polymorphisms, marking the first time a mutation in MSTN has been quantitatively linked to increased athletic performance

    Inverse Modeling for MEG/EEG data

    Full text link
    We provide an overview of the state-of-the-art for mathematical methods that are used to reconstruct brain activity from neurophysiological data. After a brief introduction on the mathematics of the forward problem, we discuss standard and recently proposed regularization methods, as well as Monte Carlo techniques for Bayesian inference. We classify the inverse methods based on the underlying source model, and discuss advantages and disadvantages. Finally we describe an application to the pre-surgical evaluation of epileptic patients.Comment: 15 pages, 1 figur

    On the Whitehead spectrum of the circle

    Full text link
    The seminal work of Waldhausen, Farrell and Jones, Igusa, and Weiss and Williams shows that the homotopy groups in low degrees of the space of homeomorphisms of a closed Riemannian manifold of negative sectional curvature can be expressed as a functor of the fundamental group of the manifold. To determine this functor, however, it remains to determine the homotopy groups of the topological Whitehead spectrum of the circle. The cyclotomic trace of B okstedt, Hsiang, and Madsen and a theorem of Dundas, in turn, lead to an expression for these homotopy groups in terms of the equivariant homotopy groups of the homotopy fiber of the map from the topological Hochschild T-spectrum of the sphere spectrum to that of the ring of integers induced by the Hurewicz map. We evaluate the latter homotopy groups, and hence, the homotopy groups of the topological Whitehead spectrum of the circle in low degrees. The result extends earlier work by Anderson and Hsiang and by Igusa and complements recent work by Grunewald, Klein, and Macko.Comment: 52 page

    Inferring brain-wide interactions using data-constrained recurrent neural network models

    Get PDF
    Behavior arises from the coordinated activity of numerous anatomically and functionally distinct brain regions. Modern experimental tools allow unprecedented access to large neural populations spanning many interacting regions brain-wide. Yet, understanding such large-scale datasets necessitates both scalable computational models to extract meaningful features of inter-region communication and principled theories to interpret those features. Here, we introduce Current-Based Decomposition (CURBD), an approach for inferring brain-wide interactions using data-constrained recurrent neural network models that directly reproduce experimentally-obtained neural data. CURBD leverages the functional interactions inferred by such models to reveal directional currents between multiple brain regions. We first show that CURBD accurately isolates inter-region currents in simulated networks with known dynamics. We then apply CURBD to multi-region neural recordings obtained from mice during running, macaques during Pavlovian conditioning, and humans during memory retrieval to demonstrate the widespread applicability of CURBD to untangle brain-wide interactions underlying behavior from a variety of neural datasets

    Breed Relationships Facilitate Fine-Mapping Studies: A 7.8-kb Deletion Cosegregates With Collie Eye Anomaly Across Multiple Dog Breeds

    Get PDF
    The features of modern dog breeds that increase the ease of mapping common diseases, such as reduced heterogeneity and extensive linkage disequilibrium, may also increase the difficulty associated with fine mapping and identifying causative mutations. One way to address this problem is by combining data from multiple breeds segregating the same trait after initial linkage has been determined. The multibreed approach increases the number of potentially informative recombination events and reduces the size of the critical haplotype by taking advantage of shortened linkage disequilibrium distances found across breeds. In order to identify breeds that likely share a trait inherited from the same ancestral source, we have used cluster analysis to divide 132 breeds of dog into five primary breed groups. We then use the multibreed approach to fine-map Collie eye anomaly (cea), a complex disorder of ocular development that was initially mapped to a 3.9-cM region on canine chromosome 37. Combined genotypes from affected individuals from four breeds of a single breed group significantly narrowed the candidate gene region to a 103-kb interval spanning only four genes. Sequence analysis revealed that all affected dogs share a homozygous deletion of 7.8 kb in the NHEJ1 gene. This intronic deletion spans a highly conserved binding domain to which several developmentally important proteins bind. This work both establishes that the primary cea mutation arose as a single disease allele in a common ancestor of herding breeds as well as highlights the value of comparative population analysis for refining regions of linkage

    Fine mapping a locus controlling leg morphology in the domestic dog

    Get PDF
    The domestic dog offers a remarkable opportunity to disentangle the genetics of complex phenotypes. Here, we explore a locus, previously identified in the Portuguese water dog (PWD), associated with PC2, a morphological principal component characterized as leg width versus leg length. The locus was initially mapped to a region of 26 Mb on canine chromosome 12 (CFA12) following a genome-wide scan. Subsequent and extensive genotyping of single-nucleotide polymorphisms (SNPs) and haplotype analysis in both the PWD and selected breeds representing phenotypic extremes of PC2 reduced the region from 26 Mb to 500 kb. The proximity of the critical interval to two collagen genes suggests that the phenotype may be controlled by cis-acting mechanisms
    • 

    corecore