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ABSTRACT 
Behavior arises from the coordinated activity of numerous anatomically and functionally distinct brain regions. Modern 
experimental tools allow unprecedented access to large neural populations spanning many interacting regions brain-wide. Yet, 
understanding such large-scale datasets necessitates both scalable computational models to extract meaningful features of inter-
region communication and principled theories to interpret those features. Here, we introduce Current-Based Decomposition 
(CURBD), an approach for inferring brain-wide interactions using data-constrained recurrent neural network models that 
directly reproduce experimentally-obtained neural data. CURBD leverages the functional interactions inferred by such models 
to reveal directional currents between multiple brain regions. We first show that CURBD accurately isolates inter-region 
currents in simulated networks with known dynamics. We then apply CURBD to multi-region neural recordings obtained from 
mice during running, macaques during Pavlovian conditioning, and humans during memory retrieval to demonstrate the 
widespread applicability of CURBD to untangle brain-wide interactions underlying behavior from a variety of neural datasets. 
   
 
INTRODUCTION 
During development, the nervous systems of even small 
organisms organize into remarkably complex structures. 
Brains exhibit structural modularity (e.g., brain regions, 
laminar organization, cell types) with phylogenetically-
determined specialization across modules1. Brain regions, in 
particular, have striking specialization and unique functional 
characteristics. However, individual brain regions also 
frequently interact with numerous other regions throughout 
the brain2. These macroscopic circuits are recurrently 
connected via direct projections, multi-synapse loops, and 
more widespread, indirect effects such as neuromodulator 
release3. Consequently, much of the brain is active during 
even simple behaviors that could, in theory, be mediated by 
only a smaller subset of regions4–6. Deriving an understanding 
of the neural basis of behavior requires consideration of the 
distributed nature of brain-wide activity. However, despite 
the prevalence of large-scale, multi-region datasets afforded 
by modern experimental techniques, researchers lack a 
comprehensive, unifying approach to infer brain-wide 
interactions and information flow. Here, we introduce 
Current-Based Decomposition (CURBD), a computational 
framework that leverages recurrent neural network (RNN) 
models of multi-region neural recordings to infer the 
magnitude and directionality of the interactions between 

regions across the brain. While most neural data analysis and 
dimensionality reduction techniques7 describe the output of 
neurons (e.g. spiking activity), CURBD reconceptualizes the 
activity of a neural population in terms of the inputs driving 
the neurons. We first introduce the conceptual advantages of 
CURBD and validate the method on simulated datasets where 
ground truth multi-region interactions are known. We then 
apply CURBD to multi-region calcium fluorescence 
recordings from four cortical regions of mice during running, 
and electrophysiological data from three cortical and 
subcortical regions in the rhesus macaque during Pavlovian 
conditioning and four brain regions of human participants 
during memory retrieval. These examples highlight the 
widespread applicability of CURBD for inferring multi-
region interactions from large-scale neural datasets. 
 
Current-based decomposition of multi-region datasets 
using recurrent neural networks 
CURBD operates on the fundamental premise that the 
exchange of currents between active units in a recurrently-
connected neural network can be precisely estimated. In a 
single-layer network, the currents driving a single target unit 
can be viewed as a weighted sum of the activity of the 
“source” units (Figure 1a). Mathematically, these weights 
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correspond to interaction strengths, summarized by a vector 
with each source unit represented as a single entry in the 
vector. However, neural circuits in biological brains are 
typically intricately, recurrently connected2. This feature 
prompted common use of RNNs to model their computational 
functions8,9. RNNs trained to produce desired behaviors10–12 
and tasks13–18 or match neural data2,17,19 (or both20) can be 
reverse-engineered to generate hypotheses for how biological 
neural circuits could implement similar functions21,22. As in 
the single-layer network, the activity of any unit in an RNN 
can be computed as a weighted sum of the activity of all other 
units in the network, which are the sources of its input 
(Figure 1b). The activity of the network can thus be 
described compactly using a single “directed interaction” 
matrix quantifying the magnitude and type (excitatory or 
inhibitory) of the interactions. 
 
Given the high degree of recurrent connectivity between 
regions, interactions between active neurons in different brain 
regions can be conceived as an RNN2. To implement 

CURBD, we model brain-wide circuitry as multiple inter-
connected RNNs forming a “network of networks”2. The 
activity of units in each region of this RNN is shaped by 
excitatory and inhibitory “source currents” from all regions 
that provide input, including from recurrently connected units 
within the same region. If the connectivity relating these 
networks is known, then the source currents into a target 
region from any other region can be estimated using the 
corresponding submatrix of the directed interaction matrix 
and the activity of the source region (Figure 1c). When 
summed, these currents reconstruct the total activity of each 
neuron in the region, however, CURBD allows the total 
activity of each region to be decomposed into a set of source 
currents from all other regions (Figure 1d). Estimating 
population-wide inputs at this scale produces an 
unprecedented view into multi-region interactions. 
Furthermore, CURBD scales readily beyond two 
interconnected regions to brain-wide interactions19, 
circumventing a limitation of many existing approaches23–26. 
 

 
Figure 1. Current-based Decomposition (CURBD) of multi-region interactions using recurrent neural networks. (a) In a 
single-layer network, each source unit connects to a target unit with a directed interaction weight given by the vector J. 
The activity of the target unit can be derived based on its source current, a weighted combination of the source activity 
(ϕ) multiplied by the corresponding excitatory or inhibitory directed interaction weight. (b) In recurrent neural network 
(RNN) models, each unit is driven by inputs from the other units, but also sends outputs to those same units. Thus, the 
directed interactions are summarized by a matrix J with each column containing the weights of a source unit and each 
row those of a target unit. (c) Neural circuits can be modeled as a ‘network of networks’, i.e., with interconnected but 
distinct regions. The directed interactions governing multiple regions are still summarized by a single matrix J where 
submatrices along the diagonal correspond to within-region interactions, and off-diagonal submatrices correspond to 
interactions between different regions. (d) As in the single-layer network in Panel a and single-module RNN in Panel b, 
the currents driving each target unit can be viewed as the weighted sum of source activity from each of these submatrices. 
By multiplying the weights in each submatrix by the source activity of each region individually, we can decompose the 
total activity of any region (e.g., Region A) into the constituent source currents of the total activity. 
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Implementation of CURBD 
CURBD is based on the directed interaction matrix, J, which 
we use to infer currents. This matrix estimates the effective 
strength and type—excitatory (Jij>0) or inhibitory (Jij<0)—
of interactions between active neurons, both within and 
across regions, that give rise to experimentally-observed 
neural dynamics. Since this matrix dictates the entire neural 
dynamical system over time, it captures the stability as well 
as the population-wide covariance of the activity (Figure 2c). 
Yet, a matrix capturing both the stability and structure of 
multi-region interactions is impossible to obtain through 
experimental measurements alone. Thus, we employ Model 
RNNs to infer the directed interaction matrix directly from 
multi-region experimental data obtained from behaving 
animals (Figure 2a). We first initialize a Model RNN with 
random connectivity. The Model RNN typically contains a 
number of units equal to the number of neurons available in 
the dataset to be modeled, but larger and subsampled variants 
can be employed17. Each model unit is then assigned to one 
neuron in the experimental dataset during training. The goal 
is to learn a directed interaction matrix such that the Model 
RNN autonomously reproduces the time-series activity of the  

 
recorded neurons given only the initial state of the neurons. 
At each time step, the activity of the next time point in the 
Model RNN is computed as the sum of the current state of 
population activity, 𝜙(t), weighted by J (Equation 1). 

  (1) 

Training proceeds iteratively by Recursive Least 
Squares10,17,19 (Figure 2b; see Methods) in which  the 
instantaneous linear error between each Model RNN unit 
(zi(t)) and the activity of its corresponding experimentally 
recorded neuron (ai(t)) is minimized. At each training step, 
the directed interaction matrix J is updated by ΔJ, a function 
of this error (Equation 2; see Methods). Note that the Model 
RNN can be trained either from trial-averaged data aligned 
on relevant events or, when large numbers of simultaneously-
recorded neurons are available, using single-trial or even 
continuous time-series data. Thus, 

    (2) 

 
Figure 2. Data-constrained multi-region RNN design, training procedure, and outcomes. (a) CURBD is implemented 
through a Model RNN constrained from the outset by experimental data. Neural data from experiments in behaving 
animals (here, mice, monkeys, and human participants) are segmented into modules such as brain regions. A Model 
RNN is constructed such that each unit is trained to match a single experimentally recorded neuron from the full dataset 
of neural population activity from multiple interacting regions. (b) Training occurs iteratively using Recursive Least 
Squares (RLS), where the connectivity matrix J of the Model RNN is modified over time until the activity of the RNN units 
match the experimental data. (c) This approach has several advantageous outcomes. 1) The model, after training, 
exhibits realistic neural dynamics consistent with experimental data. 2) The trained multi-region RNN produces a stable 
dynamical system. 3) The directed interaction matrix inferred by the trained Model RNN gives unique insight into the 
functional connectivity responsible for the observed dynamics in the data, including strength and type (e.g., excitatory or 
inhibitory and unidirectional or feedback projections between regions) of interactions, both within and across regions.
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At this stage, to train the Model RNN, we do not need to 
incorporate assumptions about the identity of the modeled 
neurons, such as brain region (or cell type, cortical layer, etc). 
The Model RNN instead learns a single dynamical system 
that autonomously reproduces the entire sequence of multi-
region experimental data using just an initial condition. In 
essence, after training we obtain an in silico model of the 
recorded brain regions that recapitulates the experimentally 
recorded multi-region data, but with crucial advantages 
(Figure 2c): i) the Model RNN natively generates realistic 
patterns of neural activity; ii) training tames the chaotic 
dynamics of the randomly initialized network10, ensuring that 
the trained network is dynamically stable; and iii) the model 
contains the directed interaction matrix that CURBD 
leverages to infer the currents between recurrently connected 
units both within and between regions. Since the Model RNN 
directly reproduces time-series neural data, this directed 
interaction matrix is an estimate of the functional interactions 
between each recorded neuron. These functional interactions 
are distinct from anatomical connectivity since they can 
include long-range and indirect effects such as 
neuromodulator release. Consequently, the currents in the 
RNN represent a functional estimate of the information 
exchanged between neurons in the recorded dataset, rather 
than a direct measure of physiological currents such as 
postsynaptic potentials. 
 
The current into any one target unit i=1, 2, …, N can therefore 
be viewed as the sum of the activity of the N source units 
scaled by the respective interaction weights between the 
source units and the target unit (Equation 3). 

  (3) 

Since this is a dot product, all of the constituent source 
currents sum to reconstruct the full activity of units in the 
target region. In this paper, we focus on currents exchanged 
between brain regions. By restricting the summation in 
Equation 3 to source units from a specific region, we can 
isolate the currents into the target region from a specific 
source region (Figure 1d). In practice, based on labels 
applied to each experimentally recorded neuron, the matrix J 
can be broken into M2 submatrices, where M is the number of 
regions identified in the dataset, corresponding to all pairs of 
source/target interactions in the region (Figure 1c). Note that 
in this paper we assume that the region identities for each 
neuron are known a priori through anatomical labeling or 
other forms of clustering. This separation of currents can be 
considered as a decomposition of the activity of the target-
region neurons based on the relative contributions of each 
source region. These source currents can be powerful tools to 
analyze existing neural data and help guide new experiments 
to dissect multi-region interactions. Direct analysis of the 

characteristics (e.g., strength, type, or timing) of the disparate 
current inputs can provide insight into the multi-region 
interactions that produce cohesive behavior. Additionally, the 
source currents inferred by CURBD provide a unique view 
into the inputs shaping neural population activity that are not 
easily observed experimentally. 
 
RESULTS 
Validation of CURBD on ground truth datasets 
Since CURBD was designed to infer unobservable 
interactions in experimental datasets, we first validated the 
method in simulations where the ground truth inter-region 
currents are known. We created a generator model 
comprising three chaotic RNNs representing distinct regions 
with sparse inter-region connectivity (Figure 3a; see 
Methods). Region B was externally driven by a sequentially 
active population, Region C was externally driven by a 
population generating fixed points, and Region A was driven 
only through interactions with Regions B and C. We designed 
the simulation such that Region A was highly chaotic without 
clear representations of either external input (Figure 3d). 
 
We trained a single Model RNN (Figure 3b) to match the 
simulated data from the generator model (Figure 3c-d; see 
Methods). We hypothesized that CURBD would accurately 
infer the inputs to Region A from source Regions B and C 
despite the chaotic nature of the population activity observed 
in Region A. Using the submatrices of the directed interaction 
matrix (Figure 3b), we decomposed the activity of Region A 
into the currents from each source region. These currents 
showed qualitatively similar activation patterns to those in the 
source regions (Figure 3e), even though these patterns were 
not apparent in the population activity of Region A. Since the 
true connectivity of the simulated network was known, we 
also computed the ground truth currents into Region A. We 
summarized the population-wide currents from each source 
using principal components analysis (PCA) and compared the 
CURBD output to ground truth using Variance Accounted 
For (VAF; see Methods). CURBD accurately reconstructed 
each current source driving Region A (Figure 3e). We then 
compared the performance of CURBD to canonical 
correlation analysis (CCA), which can identify individual 
subspaces that capture the shared dynamics between pairs of 
regions. We found that CCA did not infer the ground truth 
currents (Figure S2) due to the recurrence in the network27.  
 
We adapted the simulation to test the practical limits of 
CURBD. In real datasets, experimenters typically only have 
access to a small percentage of neurons in a given region. We 
repeated the simulation to test whether CURBD is effective 
when the brain regions are partially sampled by training the 
Model RNN to target only a subset of units. We computed a   
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 “similarity metric” (see Methods) that could compensate for 
the different number of recorded neurons12,28,29 to compare 
the current inferred by CURBD and the ground truth. 
CURBD accurately estimated the current dynamics even 
when the network was highly undersampled, as low as 5% of 
the population (Figure 3h). We then designed a second 
simulation to explore the regimes where CURBD succeeds. 
We simulated two recurrently connected RNNs, each 
receiving sinusoidal inputs of different frequencies (Figure 

S3). Since the sinusoidal inputs can mix with the ongoing 
chaotic dynamics in recurrent networks, they provide a more 
challenging paradigm to assess CURBD. We found that 
CURBD was most effective when the intrinsic dynamics of 
the two RNNs were distinct, with sparse inter-region 
connectivity (Figure S3g). These simulated ground truth 
datasets illustrate that CURBD can accurately infer 
unobserved source currents between multiple brain regions 
under a variety of conditions. In the following sections, we 

 
Figure 3. CURBD accurately isolates current sources in idealized, ground truth data from three interacting ‘regions’. (a) 
We generated three RNNs representing three distinct brain regions. Region B was externally driven by a sequentially 
active population, Region C was externally driven by a population generating fixed points, and Region A was driven only 
through interactions with Regions B and C. Time points 1-3 denoted by gray circles represent key time points in these 
external inputs. (b) We fit the Model RNN to the time-series data of all three regions comprising the generator model, 
reaching high variance explained (pVar=0.99) and low training error (𝝌2=7.4x10-6). (c) (Left) Training resulted in the 
directed interaction matrix describing the interactions within and between regions. (Right) Normalized distribution (log 
scale) of all weights in the Model RNN directed interaction matrix (J, black) compared with the randomly initialized matrix 
(J0, gray) (d) After training, the Model RNN accurately reproduced the single-unit activity of all three simulated regions 
(left), as well as the population trajectories in the leading principal components (PCs; right; solid lines: model; dashed 
lines: simulation). (e) The individual current sources into Region A showed qualitatively similar activation patterns to 
those in the source regions, even though these patterns were not apparent in the population activity of Region A. (f) The 
dominant PC of each source current (solid lines) and the ground truth inferred through the known connection weights in 
the generator model (dashed lines). Gray circles are the same key time points as in Panel a. (g) Variance Accounted For 
(VAF) for the first PC of each source current compared to the three ground truth source currents (VAFAtoA=0.72; 
VAFBtoA=0.89; VAFCtoA=0.98). (h) We repeated the simulation while randomly sampling different subpopulations of the 
1000 unit networks ranging from 5 to 100% of the total units. Note that the 100% mark represents repeated training runs 
of the same neurons with different random initializations of J0. We quantified CURBD performance using a “similarity 
metric” of the current dynamics (see Methods). Small dots show the similarity from 10 different repetitions; large dots 
represent the average. Gray dots show the lower-bound obtained from 100 random shuffles of the ground truth dynamics. 
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apply CURBD to multi-region experimental recordings to 
infer brain-wide currents in behaving animals. 
 
CURBD untangles brain-wide currents during spontaneous 
movement in mice 
Optical recording of fluorescence from genetically encoded 
calcium sensors allows experimenters to simultaneously track 
the activity of thousands of neurons from across the brains of 
behaving animals. Here, we demonstrate that CURBD 
untangles behaviorally relevant source currents from large-
scale, multi-region calcium imaging datasets. Mice 
expressing GCaMP6s30 were allowed to run spontaneously on 
top of an air-supported ball in complete darkness (Figure 4a). 
Using a large field-of-view two-photon microscope31, we 
imaged neural activity simultaneously from four regions 
(Figure 4a-b): primary visual cortex (V1), secondary motor 
cortex (M2), posterior parietal cortex (PPC), and retrosplenial 
cortex (RSC). Together, these regions contribute to a brain-
wide circuit governing navigation, decision-making, and 
movement32–34. Mice exhibited spontaneous bouts of running 
behavior, measured as rotations of the air-supported ball 
(Figure 4c), with complex patterns of neural activity across 
all four brain regions during these bouts. Consistent with 
recent studies5,6, we observed a high degree of activity even 
in V1 despite the fact that the mice received no visual input, 
highlighting the distributed nature of behavior-related 
activity throughout the brain. 
 
We hypothesized that CURBD could isolate the sources of 
behavioral information in regions such as V1. We trained 
Model RNNs to reproduce the neural data from the four 
recorded regions (Figure 4d-f). Applying CURBD, we 
identified strikingly different patterns of excitation and 
inhibition during running bouts for the sixteen source currents 
(Figures 4g, S4a,c). Our analysis focused on the currents into 
V1 seeking to identify sources of signals related to running. 
We computed the relative variance explained by each source 
current of the full V1 population activity (Figure 4h; see 
Methods). We predicted that currents from M2 and PPC, 
which are closely involved in planning and producing 
behavior32,35, would increase during bouts of running. 
However, we saw no clear relationship between the variance 
captured by each source current and the running speed. 
Instead, source currents between the four brain regions 
occurred in similar proportion. 
 
To analyze the population-wide dynamics of these currents, 
we computed low-dimensional neural manifolds7,36 spanning 
each source current using PCA. The trajectories within these 
manifolds (Figures 4i, S4b,d) capture the dominant 
dynamics of each source current into the target region. 
Studying the dynamics of the source currents to V1 (Figure 

4i), we observed that while M2 and PPC currents showed 
large deviations in their trajectories, RSC to V1 currents did 
not greatly change during running bouts. These observations 
suggest that information related to ongoing behavior may 
arrive in V1 selectively from M2 or PPC. To test this 
quantitatively, we built linear decoders predicting running 
speed based on each source current to V1 (see Methods). 
Comparing decoders trained using the currents into V1, we 
found that the currents from M2 contained the most 
information about running speed (Figures 4j-l, S5). These 
results illustrate the potential of CURBD to untangle the 
complex, multi-regional interactions underlying behavior 
using RNNs based on multi-region calcium imaging data. 
 
CURBD separates inter-region interactions from spiking 
data collected during Pavlovian conditioning in monkeys 
We next applied CURBD to population spiking activity 
acquired by electrophysiological recordings in macaques. 
Many multi-region population datasets obtained by 
electrophysiology are constructed using “pseudopopulations” 
where neurons recorded at different times are pooled together 
by averaging across repetitions of the same condition. We 
thus aimed to demonstrate that CURBD could infer currents 
from pseudopopulation datasets. We obtained neural data 
from two monkeys (Macaca mulatta) performing a Pavlovian 
conditioning task (Figure 5a). The monkeys learned to 
associate three conditioning stimuli with three different 
reward levels of increasing desirability: no reward (CS-), 
water, and juice. After a brief anticipatory delay, the monkeys 
received the expected reward. Using intracranial electrodes, 
we recorded from neurons in the amygdala, subcallosal 
anterior cingulate cortex (ACC), and rostromedial striatum. 
These regions are known to be important for reward 
processing and affective behaviors37. Since we could record 
only small numbers of neurons on a given session, we 
constructed pseudopopulations of 343 neurons for Monkey D 
and 199 neurons for Monkey H by averaging neural activity 
across all trials for each condition on each session. All three 
regions displayed condition-specific sequence-like activity38 
(Figures 5b, S6d,i). 
 
We trained Model RNNs to reproduce the neural data for each 
monkey (Figures 5c, S6a,b,f,g). The RNNs accurately 
learned the neural dynamics of the three regions even though 
the neurons were not simultaneously recorded. Inspecting the 
nine source currents, we saw that CURBD uncovered distinct 
dynamics for each region in the circuit (Figure 5d). One 
notable advantage of CURBD is that it can infer directed 
inter-region currents to determine, for example, whether the 
interactions between two regions are reciprocal or 
feedforward. Since ACC directly projects to rostromedial 
striatum39, we focused our analysis on these two regions. 
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Intriguingly, we found that the strength of interactions 
between striatum and ACC were asymmetric (Figure 5e, 
Figure S6c,h). Since the inferred currents are the product of 
both the interaction strength and the source region activity, 
we further studied the asymmetries in the bidirectional 

interactions using the total magnitude of current between the 
two regions (Figure 5f-g). We saw strong currents from 
Striatum to ACC following the water stimulus, but no 
corresponding current from ACC to Striatum. However, on 
the juice trials, we saw strong bidirectional currents.  

 
(legend on next page) 
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Crucially, the  currents inferred through CURBD were 
consistent across both monkeys, as well as across five 
different random initializations of the Model RNN. 
  
Since the pseudopopulations are constructed post hoc, their 
size and the specific neurons that are chosen for inclusion in 
the population can be arbitrary. We tested whether CURBD 
infers the same population-wide current dynamics with 
pseudopopulations constructed by sampling different subsets 
of the total population of neurons. We randomly subsampled 
the available neurons from each region to create 
pseudopopulations of different sizes (between 60% and 90% 
of the total) and performed CURBD. We computed the 
similarity metric as above for each of the nine source currents, 
comparing the inferred currents at each sampling percentage 
to the currents inferred when using the full population. We 
found a high degree of similarity in the identified currents 
even when using just 60% of the available neurons (Figure 
S7). Thus, CURBD can be readily applied to 
pseudopopulations comprising non-simultaneous recordings, 
yielding robust estimates of the interactions between regions.  
 
CURBD applied to single-cell spiking data from humans 
during memory retrieval 
We next applied the method to cellular resolution, multi-
region, spiking electrophysiology recordings from humans. 
Five participants performed a set of two memory tasks in 
eight interleaved blocks (Figure 6a-c, see Methods)40. In the 
first, participants categorized images based on high level 
sensory features. In the second, participants were presented 
with an image and reported whether or not they had seen the 
image before. As the participants performed this task, we 

recorded the activity of neurons in two frontal cortical 
regions—pre-supplementary motor area (preSMA) and 
dorsal anterior cingulate cortex (dACC)—and the 
hippocampus and amygdala (H/A) using hybrid depth 
electrodes41. Using the same procedure as in the monkey 
dataset, we constructed pseudopopulations from neurons 
recorded from between two and five sessions in each 
participant. Since some participants had few recorded 
neurons from either hippocampus or amygdala, we combined 
them for later analyses40. Memory retrieval is believed to be 
mediated by interactions between frontal cortices and the 
H/A40. Our goal was to demonstrate that CURBD could 
separate currents related to the memory retrieval and memory 
formation within these regions. Thus, we focused our analysis 
on the memory task, where participants accessed their 
memory after viewing each image and instantiated a new 
memory following a novel image.  
 
We fit Model RNNs to the pseudopopulation datasets from 
each participant (Figures 6d-f, S8) to estimate the directed 
interaction matrices. We then performed CURBD to infer the 
currents driving H/A following presentation of familiar or 
novel images. Inspecting trajectories in the first two PCs of 
the full H/A activity and each source current, we saw distinct 
current patterns between the categorization and memory tasks 
after image presentation (Figure S9). Within the memory 
task, the currents within the circuit also changed between 
novel versus familiar image conditions, with familiar images 
causing a small response in the frontal cortex to H/A currents 
and novel images causing a large response in all currents. We 
quantified these effects using the Mahalanobis distance from 
the cluster of resting state activity (Figure 6h; see Methods). 

(continued from previous page) 
Figure 4. Isolating source currents from multi-region calcium recordings in mice. (a) We recorded neural activity from 
four brain regions in two mice expressing GCaMP6s. Mice were head-fixed on an air-supported ball in complete darkness. 
Running was tracked using sensors recording the pitch (gray), roll (cyan), and yaw (magenta) velocities of the ball; the 
total magnitude of the three signals, combined, is summarized as running speed (black). (b) We imaged two planes from 
each brain region (regions of interest, ROIs). (c) Behavior and neural population activity from the four regions during a 
brief period of spontaneous running for two mice. Text inset denotes the number of recorded neurons in each region. (d) 
We used ten consecutive minutes of recordings to fit a Model RNN for both mice. (e) Proportion of variance explained 
(pVar) and training error (𝝌2) for the RNNs trained to match data from Mouse A (solid lines) and two sessions from Mouse 
B (dashed lines). (f) (Top) Example directed interaction matrix for Mouse A. (Bottom) Normalized distribution of interaction 
weights (log scale) for the three Model RNNs before (gray) and after (black) training. (g) CURBD decomposition for 
Mouse A. (Left) Heatmaps of RNN unit activity for the four regions. (Right) Heatmap of current decomposition for each 
of the sixteen source currents capturing all possible inter-region interactions. (h) The proportion of unique variance 
explained by each source current of the total V1 activity. Running speed is overlaid in white, and cyan lines indicate 
running bouts. (i) V1 source current trajectories in the three leading PCs for Mouse A. Cyan dots denote time points at 
which the mouse running speed was above a threshold ball speed. (j) We used linear decoders to predict running speed 
from each source current. Example decoding predictions (colored lines) of the measured running speed (dashed line) for 
the four source currents into V1 for Mouse A. (k) VAF for all sixteen source current decoders for Mouse A. (l) Decoder 
performance (mean and standard deviation across 1000 random cross-validated test sets; see Methods) for source 
currents into V1 for Mouse A and two sessions from Mouse B. 
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Across all five participants, CURBD identified a substantial 
change in currents (relative to baseline) from preSMA to H/A 
when viewing familiar images, and smaller changes in the 
other source currents. Viewing novel images, on the other 
hand, caused large sustained currents throughout the whole 
network. These results suggest a specificity in the inter-region 
interactions inferred by CURBD: frontal cortex provides 
input to H/A during memory retrieval, while the remaining 
pathways are recruited following a novel image to encode 
new information into memory. 
 
 

DISCUSSION 
Advantages of CURBD 
Typical data analysis approaches study population activity 
from the perspective of the experimentally measured outputs 
from a neural circuit (e.g., action potentials through 
electrophysiology or calcium fluorescence signals through 
imaging). Using dimensionality reduction techniques7, we 
can estimate low dimensional neural manifolds36,42 embedded 
in the space of total population activity. Neural manifolds are 
defined by patterns of covariation between neurons in 
measured population activity. However, the covariance 
observed in neural populations is shaped by the inputs driving 

 
Figure 5. Current-based decomposition of three-region pseudopopulation recordings in macaques. (a) Macaque 
monkeys performed a Pavlovian conditioning task where one of three stimuli associated with no reward (unconditioned 
stimulus), water, or juice were presented for 1 second. The associated reward was delivered after a short delay (0.4-0.6 
seconds) then a second water reward signified the trial end. (b) Trial-averaged firing rates in the pseudopopulation 
dataset for Monkey D for the amygdala, subcallosal ACC, and striatum during the unconditioned stimulus (left, inset 
number denotes neuron count in each region), water stimulus (middle), and juice stimulus (right). Neurons in each region 
are aligned on the presentation time of the stimulus and sorted according to their time of peak activity in the juice 
condition. (c) (Left) Schematic of Model RNN. (Right) Proportion of variance in the neural population explained by the 
model (top, pVar) and training error (𝝌2, bottom) as a function of the number of training iterations. (d) CURBD of activity 
in each region for the juice trials. Left heatmaps show the full Model RNN activity. Remaining heatmaps show the 
decomposition for each of the sixteen source currents capturing all possible inter-region interactions (e) (Left) Directed 
interaction matrix for an example Model RNN from Monkey D. (Right) Distribution of weights (log scale) in the striatum 
to ACC (red) and ACC to striatum (yellow) submatrices. (f) Magnitude of bidirectional currents from striatum to ACC (red, 
top) and ACC to striatum (yellow, bottom) during presentation of the three stimuli. Solid line: Monkey D; dashed line: 
Monkey H. Error bars: standard deviation across five different random initializations of the Model RNNs. Schematics (top 
row) summarize the dominant source currents inferred by CURBD—magnitude and directionality—between the two 
regions. (g) Statistical summary of the percent change in total current in the first 1s of each condition compared to the 
mean in the unrewarded condition. Points represent mean and lines s.e.m. *: significance at p<0.05, t-test. 
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that population43. CURBD offers a unique view of neural 
activity by decomposing experimentally measured population 
activity into such inferred inputs or ‘source currents’. Rather 
than identifying a single manifold capturing the measured 
outputs of active units within a given region, we can use the 
source currents to compute a separate manifold, one for each 
source current inferred. Therefore, CURBD allows us to 
reconceptualize population activity as numerous manifolds 
embedded in the space of neural activity, each capturing the 
dynamics of a single, isolated source of input. 
 
CURBD addresses several gaps in commonly applied 
computational approaches for analyzing experimental data 
enabled by new technologies for monitoring large scale 
neural activity from multiple interacting brain regions 31,44–48. 
Common methods to study interactions between brain regions 

such as linear regression23,26, CCA49, constrained 
dimensionality reduction24,25, generalized linear models 
(GLMs)23, or Granger causality50 rely on correlative analysis 
of neural data, posing several challenges. First, correlation-
based inference of functional connectivity cannot distinguish 
between correlations that arise from common inputs and 
those that arise from other types of interactions between 
regions, though these can be partially accounted for by 
incorporating additional covariates23,51. Second, correlation 
alone does not provide directionality, though careful 
assessment of spike latencies can provide some insight into 
possible directional effects52. Third, correlative analyses 
typically describe interactions between two regions and are 
difficult to extend to data from multiple interacting regions, 
though recent work on switching dynamical systems shows 
promise53,54. CURBD addresses these limitations by building 

 
Figure 6. Inferring source currents between four regions in humans performing a memory-retrieval task. (a) Human 
participants were implanted with depth electrodes to record single-unit spiking activity from neurons in the hippocampus 
and amygdala (combined and abbreviated H/A), pre-supplementary motor area (preSMA), and dorsal anterior cingulate 
cortex (dACC). (b) Trial structure during each memory block. After a two-second baseline period, a familiar or novel 
image was presented. Participants reported whether they had previously seen the image (familiar) or not (novel). (c) 
Each experimental session comprised eight blocks. In odd blocks the participants categorized images; in even blocks, 
as schematized in Panel b, the participants reported whether a presented image was novel or familiar. We used data 
from blocks 4, 6, and 8 to compare familiar and novel stimuli when task performance was highest. (d) Training 
performance (pVar and 𝝌2) for Model RNNs in P51, shades of gray denote five different random initializations (runs). (e) 
Directed interaction matrix of a Model RNN trained to  match data from P51. (f) Pseudopopulation activity during the 
memory task (Block 4) from P51 following familiar (left, inset number denotes neuron count) and novel (middle) images, 
and the corresponding Model RNN activity on novel trials (right) for the four regions. Neurons within each region are 
sorted based on the time of peak activity in the recorded data on the novel trials. (g) Population trajectories projected 
onto the leading two PCs for H/A neurons during the pre-stimulus baseline period (Rest, gray) and in response to familiar 
(magenta) and novel (cyan) stimuli, and the source current trajectories within H/A for the two types of stimuli. Dot indicates 
the state at the time of stimulus onset. (h) Mahalanobis distance from the pre-stimulus rest period computed over time 
for each source current into H/A. Dot indicates time of stimulus onset. 
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and analyzing RNNs that are trained to match the entire time-
series from experimentally collected data. Thus, CURBD 
explicitly models the recurrence between all recorded 
neurons, capturing all possible multi-region interactions in 
the dataset. This allows us to, in an unbiased way, capture the 
directionality and magnitude of the interactions within and 
across regions that are responsible for the observed neural 
dynamics. Furthermore, the directed interaction matrix 
inferred from the trained multi-region RNN is asymmetric, 
allowing directional estimates of the inferred functional 
interactions (e.g., Figure 5e). Lastly, since CURBD 
concurrently models all multi-region interactions, it scales 
natively to arbitrarily large datasets with any number of 
regions, even to whole-brain recordings available from 
Caenorhabditis elegans55 and larval zebrafish19,44,45. In 
contrast to dynamic causal modeling56, CURBD does not 
necessarily require known perturbations or inputs, and can 
flexibly model any dataset. CURBD also natively models the 
inherent dynamical stability of the neural data. This 
biologically-relevant constraint leads to more specific and 
meaningful solutions. 
 
Interpreting directed interactions inferred from RNNs 
constrained directly by data 
While CURBD estimates multi-region interactions by 
incorporating recurrence within and between regions and 
dynamical stability, these interactions should not be 
considered causal relationships. Additionally, the directed 
interactions estimated by the Model RNN need not relate to 
actual synaptic connectivity. While a direct monosynaptic 
connection between two neurons should contribute to a strong 
directed interaction weight, strong interactions could arise 
indirectly as well57. Polysynaptic pathways (including those 
involving neurons or brain regions that were not 
experimentally observed) or triggering neuromodulator 
release could enable one neuron to exert an influence on other 
neurons that would manifest as an inferred directed 
interaction weight19,58. Additionally, brain-wide state changes 
that impact distributed neural circuits—such as those induced 
by stress19, depression59, or even glia60—could lead to strong 
functional relationships between recorded neurons. 
 
Model RNNs underlying CURBD are a dynamical system 
The Model RNNs used for CURBD are specific, learned 
dynamical systems that capture the essential features of 
theneural dynamics from the data they were trained to match 
based on an initial condition. This facet represents a 
difference between CURBD and other approaches that seek 
generative models of the neural dynamics21. However, even 
though our models here are typically fit only to single 
instantiations of data61, we identify consistent solutions from 
one iteration to another, for instance, at the level of statistical 

distributions of groups of interaction weights (e.g., Figure 
S6) as well as at the level of currents inferred by CURBD 
(e.g., Figure 5f). Furthermore, since the inter-region currents 
inferred by CURBD rely on the product of the directed 
interaction weight matrix and the activity, the estimation 
noise in different realizations of the matrix are averaged out. 
Therefore, the currents identified by CURBD are robust to 
different random initializations of the directed interaction 
matrix, allowing for consistent solutions under a variety of 
initialization conditions, as well as to different random 
subsamples of the modeled neurons. 
 
Ultimately, the Model RNNs underlying CURBD should be 
considered as a model of the data itself—an in silico 
representation of the experiment. This model enables a deeper 
dive into the experimentally measured data using the directed 
interaction matrix or currents due to inter-region interactions 
which we cannot access experimentally62. Our current 
approach assumes that a single directed interaction matrix 
captures the dynamics for the whole duration of the data. 
Factors such as learning63,64 or behavioral state changes19 
could change the dynamical rules governing the interactions 
among different neural populations in vivo. If such state 
changes are identified, they can be addressed by fitting 
different Model RNNs on different samples of data (e.g. 
periods of time, task conditions). The final currents can then 
be fully reconstructed by essentially “stitching together” the 
currents inferred by Model RNNs fit to each set of samples. 
More elegantly, the training process could also be modified 
to identify state changes and adjust the directed interaction 
matrix over time in a partially unsupervised, adaptive manner. 
 
Additional uses and extensions of CURBD 
The multi-region Model RNNs employed in the applications 
above made no assumptions about the structure of the 
directed interaction matrix or inter-region connectivity. 
Instead, we allowed the neural networks to opportunistically, 
through the process of training, construct solutions that 
recapitulated the essential dynamical features in the multi-
region experimental data. In biological systems, there are 
numerous anatomical constraints that could be incorporated 
into the model in the future. For example, the effect of a given 
neuron on its numerous downstream targets is typically either 
excitatory or inhibitory65. This constraint could be 
incorporated into the learning rule such that columns of the 
directed interaction matrix are restricted to have either all 
positive or all negative weights. Additionally, while we 
allowed our RNNs to be weighted all-to-all in the inter-
regional interactions (the off diagonal submatrices), inter-
regional connections in biological brains are highly 
structured. For example, long-range connections between 
regions are likely more sparse than within a local 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 21, 2020. ; https://doi.org/10.1101/2020.12.18.423348doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.18.423348
http://creativecommons.org/licenses/by-nc-nd/4.0/


population66. Such sparsity could be induced in an 
unsupervised manner by applying an L1 norm on the  weights 
of specific submatrices in the cost function. Brain-wide 
connectomics data57,67,68 could also be leveraged to build a 
prior into the directed interaction matrix about which 
pathways should be directly connected. Lastly, we trained the 
Model RNNs using rates estimated from the neural 
recordings. Future extensions of CURBD could allow more 
temporally-precise directed interaction estimates by 
incorporating spiking statistics models into the training. 
 
In the present work, the region identity of each experimental 
neuron was known using anatomical landmarks or electrode 
implantation site. This knowledge allowed us to readily 
divide the directed interaction matrix into region-specific 
blocks. However, we predict that in future work Furthermore, 
we predict that CURBD can be extended to provide a basis 
for functional clustering that goes beyond anatomical 
designations by applying clustering or tensor decomposition 
methods69 directly to the currents inferred by the Model RNN 
into each target unit. CURBD could be used in an 
unsupervised manner to find relevant population designations 
based on functional distinctions and their interactions with 
other neurons, identifying functional submodules within 
single regions70 and identify brain-wide functional circuits. 
 
We used calcium fluorescence and spiking activity from 
single, identifiable neurons to constrain the Model RNNs for 
CURBD, but the possible use cases of the general approach 
are not confined to cellular resolution data. Model RNNs can 
be fit to non-cellular resolution data, such as multi-electrode 
local field potential recordings. Furthermore, other types of 
relevant experimental data or conditions can be incorporated 
as additional constraints on the Model RNNs during training. 
Behavioral data such as body posture derived from modern 
pose detection methods71,72 could be incorporated into the 
training process to help account for unobserved common 
inputs related to that behavior73. Static labels representing 
experimental metadata (behavioral task, stimulus condition, 
etc.) could also be incorporated to help compensate for brain-
wide state changes. These measurable external signals could 
be targeted to all recorded neurons, or a specific subset (e.g. 
brain region, cell type) if such constraints are known. 
Importantly, all of the extensions described above do not 
change the fundamental principles underlying CURBD, 
which at its core, relies on straightforward matrix 
multiplication. They only serve to provide a more constrained 
estimate of the biological system’s directed interactions. 
 
The power of CURBD lies in harnessing the ability to flexibly 
engineer multi-region RNNs based on a broad range of time-
series data from various experiments, as we have exemplified 

with the four applications presented here. There is often a 
remarkable conservation of structure and function throughout 
evolution and across species producing a certain behavior 
even with divergent phylogenetic trees74. Therefore, 
understanding the commonalities (or unique differences) in 
identified mechanisms across different species will be critical 
to uncover fundamental principles of neural computation1,75. 
This requires an analytical framework such as CURBD that 
robustly and flexibly scales across a range of different 
experimental—e.g., methodologies, levels of granularity, 
sampling densities, and spatiotemporal resolutions—such as 
those encountered when comparing different species ranging 
from smaller, highly sampled nervous systems (e.g., 
Caenorhabditis elegans, Drosophila, larval zebrafish) to 
larger, less sampled brains (e.g., rodents, non-human 
primates, and humans). Thus, CURBD provides a powerful 
new approach for comparative studies over time, across 
individuals, scales of neural function, or even species. 
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METHODS 
Code availability 
All modeling and analysis in this manuscript was done in Matlab (The Mathworks, Inc.). Matlab and Python code to train 
multi-region Model RNNs based on multi-region experimental recordings and perform CURBD using the inferred interactions 
is available at: https://github.com/rajanlab/CURBD. 
 
Multi-region recurrent neural networks 
Network elements 
Network models represent real biological circuits, but they do so with different levels of fidelity. We constructed Model RNNs 
that are directly constrained by experimentally-obtained time-series neural data. Each network unit or model neuron indexed 
by i is described by a total current xi, and an activation function, 𝜙(xi), a nonlinear function of xi, where i=1, 2, …, N is the total 
number of units in the network. Each variable xi obeys the following equation: 
 

  (4) 
 
where hi is its external input to the unit,  J is a heterogeneous matrix of recurrent connections, and τ is the unit’s time constant 
selected to match the expected temporal dynamics of the data to be modeled (for the datasets in this manuscript, see Table 2 
below), . The control parameter g determines the strength of the recurrent connections, and thus whether (g>1) or not (g<1) the 
network produces spontaneous activity with non-trivial dynamics76–78. We set g=1.5 here, though in practice we observe 
qualitatively similar results for a range of values provided g is sufficiently large to facilitate chaotic dynamics in the network. 
The network equations are integrated using the Euler method and an integration time step, 𝛥tRNN. Note that the network 
integration can occur with a finer time step than the sampling rate of the experimental data to be modeled (𝛥t). This allows for 
smoother dynamics when the experimental data may be sparsely sampled. We use 𝜙(xi)=tanh(xi), but other saturating 
nonlinearities, such as sigmoids, have been explored in related work (see Refs. 17 and 77).  This ensures that the firing rates go 
from a minimum of -1, which we conceptualized as a background rate, to a maximum at 1. The function also retains a maximum 
gradient at x=0.  
 
Recurrent weights carrying inputs onto a  target unit i=1, 2, …, N from its source partner j, Jij, which are the elements of the 
matrix J, are either fixed or modifiable (plastic), depending on how much structure is introduced into the connectivity of the 
initially disordered network. We introduce no a priori structure in J, allowing all elements to be modified during training. Jij 
can potentially be modified by a number of different learning rules; here, we use recursive least squares (see below). A crucial 
advance from previous modeling studies involves using a block-diagonal J in which each block represents the recurrent 
connections within each brain region being considered, and the off-diagonal blocks, the inter-region projections to and from 
them. In this way a two-region Model RNN has two blocks on the main diagonal relating each region to itself, and two regions 
on the off-diagonal relating each region to the other (e.g., Figure S3b). Following this pattern, multi-region Model RNNs are 
initialized with J matrices containing more than 2 blocks (e.g., Figures 5e).  
 
Typically, the initial, untrained directed interaction matrix J0 is constructed to be the same size as the number of neurons in the 
dataset to be modeled, though larger networks in which different subsets of weights are modified in a data-dependent manner 
have been explored previously in Ref. 17. Here, each Model RNN unit is matched to one recorded neuron from the respective 
experimental dataset. The individual weights in J0 are initially chosen independently and randomly from a Gaussian distribution 
with mean and variance given by <J0>=0 and <Jij>2

J=g2/N. Ultimately, the elements of J will be modified by the training 
algorithm until the activity of the model RNN’s units  autonomously produce neural data consistent with the experimental 
recordings. 
 
Design of external inputs 
In real brains, neural populations are constantly driven by external and inter-regional inputs that we cannot always observe. To 
mimic this effect, we modeled background inputs that are uncorrelated with the relevant behavior we are studying. The external 
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inputs to the units in the Model RNN, denoted by h(t), are generated from filtered and spatially delocalized white noise that is 
frozen, using the equation: 
 

  (5) 
 
where 𝜂 is a random variable drawn from a Gaussian distribution with 0 mean and unit variance, and the parameters h0 and 𝜏WN 
control the scale of these inputs and their correlation time, respectively. We use h0=1 and 𝜏WN=0.1 in this paper. There are 
typically as many different inputs as there are model neurons in the network, with individual model neurons receiving the same 
input on every simulated trial. 
 
Model RNN training 
During training, the activity of individual units in the Model RNN, say the firing rate 𝜙(t), are compared directly to teacher 
functions derived from the experimentally-recorded neurons, denoted by ai(t). This gives an error function for each Model 
RNN unit: 
 
  (6) 
 
The activity of each ith target unit can also be computed as: 
 

  (7) 
 
where 𝜙j(t) is the firing rate of the jth source neuron (j=1, 2, …, N) connected to it through the recurrent weight Jij. During 
training, the elements in the directed interaction matrix J undergo modification at a rate proportional to three factors: i) the 
error term computed above; ii) the “presynaptic” or source firing rate of each neuron; and iii) a matrix P with N2 pN x pN 
elements. P is defined mathematically as the inverse cross-correlation matrix of the firing rates of units in the network, such 
that its elements Pij are given by: 
 

  (8) 
 
The matrix P keeps track of correlations in the firing rate fluctuations across the network at every time step, and is computed 
for all i=1, 2,…, N target units and j=1, 2, …, N source units. 
 
Training proceeds iteratively as schematized in Figure 2b. At each time step, t, for i=1, 2,..., N target units, the corresponding 
elements of J are adjusted from their values at the previous time step (t-1) according to: 
 
  (9) 
 
where the update term is computed according to Refs. 10,79: 
 

  (10) 
 
The scaling term c is computed according to: 
 

  (11) 
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The error for each RNN unit i compared to its target, ei(t), is computed as: 
 
  (12) 
 
It is not generally necessary to calculate the matrix P explicitly. Instead, P can be updated iteratively according to Ref. 79: 
 

  (13) 
 
The matrix P is initialized to the identity matrix scaled by a factor P0 which controls the overall learning rate. In practice, 
training is most effective when P0 is set to be 1 to 10 times the overall amplitude of the external inputs (h0). 
 
Since the learning algorithm updates J at each time step, high performance could be observed during training even when the 
algorithm has not fully converged. Thus, after training for a fixed number of iterations (typically between 1500 and 3000 
iterations for model RNNs based on experimental neural datasets), we disabled the training for a few additional iterations to 
compute and evaluate the final goodness of fit. We assessed the quality of the fit and convergence using two metrics: 1) the 
training error (𝝌2) between the Model RNN rates and the teacher functions derived from data, computed as the mean-squared 
error ei(t) along all i=1, 2,…, N target neurons (e.g., Figures x,y,z); and 2) the proportion of variance explained (pVar) as one 
minus the ratio of the Frobenius norm of the difference between the neural data and outputs of the network compared to the 
variance of the data (e.g., see figures x,y,z): 
 

  (14) 
 
Analyzing the Directed Interaction matrix J after training 
The directed interaction matrix inferred by the Model RNN quantifies the strength of interactions between the units in the 
network. These values can be either positive or negative, suggesting excitatory or inhibitory effects on the target neuron, 
respectively. Since the RNNs we build are extensively constrained by neural dynamics, we find that it is possible to consistently 
infer similarly distributed matrices, even after starting from different random initializations (e.g., Figure S6c,h). Thus the 
statistical properties of the interaction strengths we derive from data-constrained RNNs can be reliably compared across brain 
regions, as well as between RNNs trained to match a range of experimental datasets from different species. In this paper, we 
summarized the statistical properties of such model-derived interaction strengths by computing histograms using the total 
number of elements of either the full J matrix or specific submatrices containing the strength and type of interactions within 
and between individual brain regions. Notably, when analyzing these matrices, we scaled the distributions by the square root 
of the number of source units to account for differences in population sizes. We also normalized each histogram by the 
maximum value to facilitate comparison between matrices derived from RNNs of different sizes, and visualized the 
distributions using a logarithmic scale. These distributions could be further summarized and quantified by metrics such as the 
median, standard deviation, skewness, or kurtosis. 
 
Computing current sources to specific brain regions 
The activity of each target unit in the Model RNN at each time step is computed as the product of the corresponding row of the 
directed interaction matrix and the activity of all source units at the previous time step. Thus, it follows that the current into the 
ith target unit, Ii(t), can be estimated by multiplying the corresponding row of the directed interaction matrix with the activity 
of all of the source units.  
 

  (15) 
 
Since this is a linear operation, the above equation can be rewritten as a sum of separate contributions from each of source 
units: 
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  (16) 
 
CURBD adopts this linear decomposition to study brain-wide currents between active neurons across multiple interacting brain 
regions. Based on Eq. 16, the total current input into a single target region from another source region can therefore be computed 
by grouping the currents from the source region weighted by the strength of the directed interactions between them. In this 
manuscript, we computed the currents in the target regions using the weights in different submatrices as described here. 
However, this method can be readily extended to separately infer excitatory (or inhibitory) currents by first setting all of the 
negative (or positive) values in the J matrix to be zero and then repeating the summation in Eq. 16. 
 
Due to the large number of free parameters in the Model RNN, i.e., order N2 elements for RNNs with N units, the training 
algorithm does not necessarily infer the precise entries, element-by-element, in the directed interaction matrix, even when 
ground truth simulated data originated via low-rank or smoothed connectivity (for details, see Ref. 17). However, we find 
consistent and reliable estimates, i.e., recapitulating statistical properties of groups of weights in the directed interaction 
matrices. Furthermore, after training, the RNNs are able to produce highly consistent dynamics even when starting from 
different initial conditions. In practice, when taking the dot product of J and 𝜙(t) to compute the currents for CURBD, random 
element-by-element fluctuations in the individual reconstructed weights between pairs of units are averaged out, but the overall 
population dynamics are preserved. For this reason, in its current state, CURBD is best applied to infer interactions between 
source and target brain regions with  sufficient numbers of active neurons. Future extensions, e.g., those that incorporate known 
connectivity between regions57,68 or additional constraints from data, such as behavioral covariates, could provide reliable 
current estimates with finer granularity than at the level of individual regions and possibly across different behavioral states. 
 
Two-region model producing idealized, ground truth, simulated data to validate CURBD 
Design of the generator model 
We simulated a model that generated idealized ground truth data to test when CURBD approach would be the most effective 
at disentangling inter-region interactions, and to probe the conditions under which it would fail to perform optimally. We 
generated two 1000 unit RNNs, each with random connectivity weights drawn from a Gaussian distribution, as described in 
the initialization procedure for the Model RNN above. One RNN (corresponding to Region A) was driven by an external  
sinusoidal signal, SA(t), oscillating at 𝜋/8 Hz, while the second (corresponding to Region B) was driven by another sinusoid, 
SB(t), oscillating at 𝜋/3 Hz and phase shifted by 𝜋/3. The two sinusoidal inputs began after two seconds of a simulated “resting 
state” during which the inputs to the RNNs were set to zero. These external inputs were connected to 33% of the units in their 
respective RNN with a fixed input weight, picked from a uniform distribution. The two RNNs were recurrently connected, with 
a varying percentage of neurons in each region (randomly selected) receiving inputs from the other region with a fixed weight 
of one. We computed the time-series activity of the ith unit in the two RNNs, rA, i(t) and rB, i(t) for ten seconds of data using the 
following steps. We initialized the states of the two RNNs to random values between -1 and 1. For each subsequent time step, 
we computed the change in activity of each RNN unit i based on its inputs according to: 
 
  (17) 
 
  (18) 
 
The scaling parameters gA and gB control how chaotic each RNN is, as described in the Model RNN training section above. 
CStoA and CStoB represent a binary connectivity vectors describing the connectivity of the external sinusoidal inputs to their 
respective regions. Similarly, CAtoB and CBtoA are binary vectors describing the connectivity between regions A and B. The 
fraction of entriess in the above inter-region connectivity vectors set to 1 is defined as prgn. wrgn and win are scalars that set the 
connection weights for the sinusoidal inputs and inter-region connections, respectively. The activity of each RNN unit i was 
then computed according to: 

 

  (19) 
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  (20) 

 
Lastly, the activity of each RNN unit i was transformed into a firing rate by passing through the nonlinearity, as described 
above: 
 
  (21) 
 
  (22) 
 
Checking robustness of CURBD over a range of simulation parameters for the Generator model 
We repeated the ground truth simulations sweeping over a broad range of parameters applicable to the generator model (Figure 
S3g):  1) gA, the dynamical regime of Region A; 2) wrgn, the strength of the weights of the recurrent connections between the 
networks; and 3) prgn, the proportion of neurons in Regions A and B receiving input from the other region. This parameter-
sweeping process helped us explore how effectively CURBD operates to untangle currents resulting from the external 
sinusoidal inputs as the properties of the modeled networks change. The remaining parameters were fixed for all of these 
simulations. Values for all of the parameters we tested are provided in Table 1. 
 

Table 1. Two-region generator model parameters. 

Parameter Description Value(s)  Parameter Description Value 

gA Region A chaos [0.9, 1.0, 1.1, 
1.3, 1.5, 1.8, 2.5]  wrgn Inter-region weight [0.001, 0.01, 0.05, 

0.1, 0.25, 0.5, 1.0] 

gB Region B chaos 1.5  prgn 
Inter-region connection 

proportion 
[0.01, 0.05, 0.1, 
0.25, 0.5, 1.0] 

𝜏 
Time constant 
of model units 0.1  win External input weight 1.0 

T Simulation time 10  𝛥t Simulation time step size 0.01 

 
For each combination of parameters in the generator model, we trained a 2000-unit Model RNN (Figure S3b) to reproduce the 
activity of the two Regions from the generator model using the algorithm described above. The parameters chosen for this “fit” 
Model RNN (Table 2) were held fixed to ensure we studied the effect only of the network properties as we swept parameters, 
not of variations in the Model RNN. For each of these Model RNNs, we applied CURBD to Region A to assess how effectively 
we could isolate the currents from the two external inputs (the sinusoidal input driving Region A and the sinusoidal input 
driving Region B) from the population. Since each external input was effectively one-dimensional, we first reduced each 
estimated population-wide source current to a single component using PCA. We then computed how accurately we could infer 
the external inputs by directly comparing the correlation coefficient (denoted by R2 in Figure S3f-g) between the leading PC 
of each source current and each of the two sinusoidal external inputs. We repeated this analysis for different combinations of 
parameters to assess which parameter regimes consistently gave the highest R2 values. 
  
Three-region ground truth simulation to validate CURBD 
Design of the generator model 
We designed a second idealized ground truth simulation to validate whether CURBD could effectively infer source currents 
between different interacting regions even when there are no external inputs driving a particular neural population. We 
simulated three 1000-unit RNNs using a generator model similar to the two-region model described above (Figure 3a). 
However, rather than sinusoidal inputs as in the two-region ground truth model, two of the three interconnected RNNs received 
time-varying patterns of inputs from other model networks. The external inputs driving Region B were provided by a network 
generating a Gaussian “bump” propagating across the network sequentially, SQ(t). The sequence began 2 seconds after the start 
of the simulation and ended 4 seconds later, with each sequentially activating unit i=1, 2,…, N behaving according to: 
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  (23) 
 
where 𝜎 denotes the width of the bump across the population (here, 20% of the units), N represents the population size (here, 
1000 units), and T represents the total simulation time of twelve seconds. 
 

Table 2. Model RNN training parameters for all datasets. 

Parameter Description 
2-region 

simulation 
3-region 

simulation 
Mouse 
dataset 

Monkey 
dataset 

Human 
dataset 

g Chaos 1.5 1.5 1.5 1.5 1.5 

𝜏 Time constant for model units 0.1 0.1 0.3 0.01 0.0075 

P0 Learning rate 1.0 1.0 1.0 1.0 1.0 

𝜏WN Time constant of filtered white noise inputs 0.1 0.1 0.1 0.1 0.1 

wWN White noise input weight 0.01 0.01 0.001 0.0001 0.001 

niterations Number of training iterations 100 500 2500 1500 2500 

𝛥t Data time step size (s) 0.01 0.01 0.1866 0.01 0.01 

𝛥tRNN Model RNN integration step size (s) 0.001 0.001 0.0467 0.0005 0.001 

 
The external input to Region C was provided by another 1000-unit network generating a fixed point, FP(t), for 8 seconds that 
instantaneously shifted to a new fixed point for an additional 4 seconds. The fixed points were generated by sampling SQ(t) at 
two different time points (t=2s and t=5s) and holding them at the sampled value of firing rate for the duration of the fixed 
point. The external inputs were connected to 50% of the units in their respective regions (randomly selected) with a fixed 
negative weight (inhibitory) for Region B and positive weight (excitatory) for Region C. The third RNN (Region A) received 
only the recurrent inputs from the other two RNNs, no external drive. The Region A RNN was modeled at a different value of 
g from the other two networks, yielding distinct dynamics (Table 3). The following update equations governed the interactions 
of the regions at each time step (with a resolution of 𝛥t=0.01), with the subsequent activity evolving similarly to the two-region 
simulation described Eqs. 19-22: 
 
  (24) 
 
  (25) 
 
  (26) 
 
Description of the Model RNN and CURBD analysis 
We trained a 3000-unit Model RNN to match the activity of the three-region generator model using the procedure described 
above. We found that the Model RNN reproduced the simulated data accurately over a wide range of parameters; for the 
simulations reported in this paper (Figures 3, S1, S2), we used the values reported in Table 2. We performed CURBD to infer 
the nine source currents governing interactions between the three regions. We reduced the dimensionality of the full 1000-unit 
population of each of the three regions and the source currents using PCA. We chose the leading five dimensions for the 
following analyses, which sufficed to capture more than 95% of the total variance in each source current, though we observed 
similar results with other assumed dimensionalities (data not shown). 
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Table 3. Three-region generator model parameters. 

Parameter Description Value  Parameter Description Value 

gA Region A chaos 1.8  wrgn Inter-region connection weight 0.01 

gB Region B chaos 1.5  prgn Fraction of inter-region connections 0.01 

gC Region C chaos 1.5  win External input weight 1.0 

𝜏true True decay constant 0.1  𝜎 
Width of sequential and fixed point- 

bumps (number of RNN units) 200 

T Simulation time 12  𝛥t Simulation time step 0.01 

 
Since the true connectivity of the network was defined in the simulated dataset, we computed the ground truth currents between 
each region to isolate the effect of isolated inputs from the source regions on the target region, including how the input activity 
would propagate through the recurrent connections of the target region. We adapted the update equations defined above to 
compute the three current sources into one region at each time step, here using Region A as an example: 
 
  (27) 
 
  (28) 
 
  (29) 
 
The same process was performed for Regions B and C using similar equations. We performed the same dimensionality 
reduction analysis on the ground truth currents as on the inferred source currents from CURBD. Since the Model RNN was 
trained to reproduce time-varying activity from all the units in the multi-region generator model, each inferred source current 
has the same dimensionality as the ground truth current, and is embedded within the same high-dimensional space of the 
population activity of the respective simulated region. We could thus directly compare each leading PC using VAF (Figures 
3g, S1). 
 

  (30) 
 
Comparison of inferred inter-region currents to shared dynamics identified by Canonical Correlation Analysis 
We compared the performance of CURBD to an analogous decomposition obtained by canonical correlation analysis (CCA)28. 
CCA obtains an optimal linear transformation relating the dimensionality-reduced population activity of the source and target 
regions to identify shared dynamics. In brief, we first took the low-dimensional trajectories of each region and performed a QR 
decomposition to identify for each region of the resulting Q, which provides an orthonormal basis for the column space of the 
low dimensional trajectories. For any pair of regions, for example Region A and Region B, we performed a singular value 
decomposition of the inner product of the corresponding Q matrices: 
 
  (31) 
 
This process effectively finds new dimensions within the manifold of Region A (denoted by U) and Region B (denoted by V) 
that maximize the correlation between the two trajectories. To analyze the shared dynamics between the two regions, we 
projected the activity of either region onto the corresponding axes. Unlike CURBD, the mapping obtained from CCA (and 
similar methods of inferring functional connectivity only from the covariance matrix of recorded neural activity) is not 
directional and is purely correlational. Thus, only one “current” can be obtained for each pair of regions. We compared the 
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VAF by the first component identified by CCA to the first PC of the ground truth currents to assess the effectiveness of this 
approach (Figure S2). 
 
Addressing partial sampling issues present in experimental data 
We repeated the above simulation to determine whether or not CURBD is effective when only a fraction of the total multi-
regional activity is ‘observed’ by the Model RNN. This control analysis addresses partial sampling issues present in real data 
when activity can be experimentally measured from only a relatively small fraction of the total number of neurons in a region. 
To simulate this scenario and test the efficacy of CURBD in the face of partial sampling issues, we trained Model RNNs to 
match activity from 5%, 20%, 50%, and 100% of the available neurons in each region (randomly selected) of the ground truth 
multi-region generator model. We repeated the simulation ten times at each subsampling level to help account for variability 
in the random sampling of neurons, as well as variability from different random initializations of the J matrix. Such variability 
scales inversely with network size for Gaussian weights; the ten repetitions at 100% sampling thus provide a lower-bound on 
the variability that would be expected within this model. Unlike the initial Model RNN analysis where every neuron was 
sampled, in the subsampling case, we can no longer guarantee that the axes should be oriented similarly in PC space and VAF 
is not a reliable measure of how well the method performed. Thus, here we again employed CCA not to identify shared 
dynamics between regions, but to compensate for differences in the number of sampled neurons generating the dynamics of a 
single region28, In this application, CCA provides a quantitative “similarity index”–quantified by the canonical correlation of 
the leading aligned dimension–of the population dynamics between the currents identified by CURBD and the ground truth 
currents (Figure 3H). 
 
Multi-region calcium fluorescence recordings in mice 
Surgery 
All experimental procedures were approved by the Harvard Medical School Institutional Animal Care and Use Committee and 
were performed in compliance with the Guide for the Care and Use of Laboratory Animals. Two female mice expressing 
GCaMP6s (C57BL/6J-Tg(Thy1-GCaMP6s)GP4.3, The Jackson Laboratory, stock 024275) were implanted with cranial 
windows over the cortical surface. Mice were 3-5 months old at the time of surgery, and given an injection of dexamethasone 
(3 µg per g body weight) 4-8 h before the surgery. Mice were anesthetized with isoflurane (1-2% in air). A cranial window 
surgery was performed to either fit a ‘crystal skull’ curved window (LabMaker UG) exposing the dorsal surface of both cortical 
hemispheres80, or to fit a stack of custom laser-cut quartz glass coverslips (three coverslips with #1 thickness each (Electron 
Microscopy Sciences), cut to a ‘D’-shape with maximum dimensions of 5.5 mm medial-lateral and 7.7 mm anterior-posterior, 
and glued together with UV-curable optical adhesive (Norland Optics NOA 65), exposing the left cortical hemisphere. The 
dura was removed before sealing the window using dental cement (Parkell). A custom titanium headplate was affixed to the 
skull using dental cement mixed with carbon powder (Sigma-Aldrich) to prevent light contamination. A custom aluminum ring 
was affixed on top of the headplate using dental cement. During imaging, this ring interfaced with a black rubber balloon 
enclosing the microscope objective for light-shielding. 
 
Imaging and behavior setup 
Data were collected using a large field of view two-photon microscope assembled as described in Ref. 31. In brief, the system 
contained a combination of a fast resonant scan mirror and several large galvanometric scan mirrors allowing for especially 
large scan angles. Paired with a remote focusing unit to rapidly move the focus depth, this setup enabled random access imaging 
in a field of view of 5-mm diameter with 1 mm depth. The setup was assembled on a vertically mounted breadboard whose 
XYZ positions and rotation were controlled electronically via a gantry system (Thorlabs). Thus, to position the imaging 
objective with regards to the mouse, the position and rotation of the entire microscope were adjusted while the position of the 
mouse remained fixed. Mice were head-fixed and placed on an air-suspended 8-inch diameter Styrofoam spherical treadmill 
that enabled spontaneous running. Using two optical sensors (ADNS-9800, Avago Technologies), we tracked the treadmill 
velocity, which was translated into pitch, roll, and yaw velocity using custom code on a Teensy microcontroller (PJCR) as a 
readout of the mouse’s running speed and direction. Individual recording sessions lasted from 45–60 minutes. Mice were 
extensively acclimated to head-fixation and running on the treadmill before data collection. We recorded behavioral and neural 
activity while mice spontaneously ran on the ball. The room was kept in complete darkness throughout the experiment. We 
defined running bouts as periods when the ball movement speed crossed a fixed threshold set to be the 90th percentile of the 
running speeds throughout the session. 
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Image acquisition 
The excitation wavelength was 920 nm, and the average power at the sample was 60-70 mW. The microscope was controlled 
by ScanImage 2016 (Vidrio Technologies). We targeted four distinct regions in the left cortical hemisphere: primary visual 
cortex (V1), secondary motor cortex (M2), posterior parietal cortex (PPC), and retrosplenial cortex (RSC). These regions were 
targeted based on retinotopic mapping (see below). In each region, we acquired images in layer 2/3 from two planes spaced 50 
µm in depth, at 5.36 Hz per plane at a resolution of 512 x 512 pixels (600 µm x 600 µm).  
 
Retinotopic mapping for selecting Ca2+ imaging locations 
We performed retinotopic mapping in the mice used for calcium imaging experiments as previously described in Ref. 63. Mice 
were lightly anesthetized with isoflurane (0.7–1.2% in air). GCaMP fluorescence was imaged using a tandem-lens macroscope 
where excitation light (455 nm LED, Thorlabs) was filtered (469 nm with 35 nm bandwidth, Thorlabs) and reflected onto the 
brain through a camera lens (NIKKOR AI-S FX 50 mm f/1.2, Nikon) focused 400 μm below the brain surface. GCaMP 
emission light was collected using the same lens, filtered (525 nm with 39 nm bandwidth, Thorlabs), and imaged with another 
camera lens (SY85MAE-N 85 mm F1.4, Samyang) and a CMOS camera at 60 Hz (ace acA1920-155um, Basler). These images 
were synchronized to visual stimuli presented on a gamma-corrected 27 inch IPS LCD monitor (MG279Q, Asus). The monitor 
was centered in front of the mouse’s right eye at an angle of 30 degrees from the mouse’s midline. The visual stimulus, a 
spherically corrected black and white checkered moving bar81 (12.5 degree width, 10 deg/s speed), was presented in 7 blocks, 
each consisting of 10 repeats of 4 movement directions (up, down, forward, backward). To produce retinotopic maps, we 
calculated the temporal Fourier transform at each pixel of the imaging data and extracted the phase at the stimulus frequency82. 
These phase images were averaged across repetitions for a given movement direction and smoothed with a Gaussian filter (25 
μm s.d.). Lastly, we calculated field sign maps by computing the sine of the angle between the gradients of the average 
horizontal and vertical retinotopic maps.  
 
For each retinotopic mapping session, we also acquired an image of the superficial brain vasculature pattern under the same 
field of view. We then acquired a similar brain vasculature image under the large field of view two-photon microscope. These 
two reference images were manually aligned and used to directly locate V1 and PPC locations for two-photon imaging. The 
location for RSC imaging was positioned adjacent to the midline and about 300 μm anterior of the PPC location. The location 
for M2 imaging was positioned one millimeter anterior of the RSC location.  
 
Pre-processing of imaging data 
We used custom code to correct for motion artifacts, as described in Ref. 83. In brief, motion correction was implemented as a 
sum of shifts on three distinct temporal scales: sub-frame, full-frame, and minutes- to hour-long warping. After motion 
correction, ROIs were extracted using Suite2P84. Afterwards, somatic sources were identified with a custom two-layer 
convolutional network in MATLAB trained on manually annotated labels to classify ROIs as neural somata, processes, or 
other83. Only somatic sources were used. This yielded large populations from neurons from each of the four targeted regions 
in Mouse A and Mouse B (Table 4). 
 

Table 4. Simultaneous neuron yield for the mouse dataset. 

Brain Region Mouse A Mouse B 

Sesson 1 Session 2 

V1 385 114 176 

M2 208 57 118 

PPC 1124 247 462 

RSC 1070 581 688 

Total 2787 999 1444 
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After identifying individual neurons, we computed average fluorescence in each ROI and converted this value into a normalized 
change in fluorescence (ΔF/F). We corrected the numerator of the ΔF/F calculation for neuropil by subtracting a scaled version 
of the neuropil signal estimated per neuron during source extraction: 
 
  (32) 
 
We estimated the baseline fluorescence (Fbase) of this trace as the 8th percentile of fluorescence within a 60-s window and 
subtracted this baseline to get the numerator:  
 
  (33) 
 
We divided this by the baseline (again 8th percentile of 60s window) of the raw fluorescence signal to get ΔF/F. We 
deconvolved the ΔF/F trace per neuron using the constrained AR-1 OASIS method44. We initialized the decay constants at 
two seconds and then optimized separately for each neuron. To fit the Model RNN, we temporally smoothed the sparse 
deconvolved spike estimates using a Gaussian kernel with four times the width of the sampling rate. We applied the same filter 
to the behavioral signals (pitch, roll, and yaw of the ball) to preserve the temporal relationship with the neural activity. For 
visualization of the neural population activity in the heatmaps of Figures 4 and S4, we scaled each neuron by the mean of the 
total activity. 
 
CURBD analysis to infer source currents from mouse data 
For each mouse, we trained Model RNNs (Mouse A: 2787 units; Mouse B, Session 1: 999 units; Mouse B, Session 2: 1444 
units) to match the time-series Ca2+ data from the four regions. We used identical parameters for each Model RNN (Table 2). 
 
We applied CURBD to infer the sixteen source currents comprising the multi-region population activity. We first assessed how 
much unique explanatory power each source current had in the total V1 population. We developed a partial coefficient of 
determination analysis to quantify this as follows. We subtracted each source current one-by-one from each V1 neuron and 
computed the sum-squared error of this difference and the recorded neural data. We then computed the sum-squared error of 
the full Model RNN fit compared to the recorded neural data. We defined the unique variance explained by the source current 
according to: 
 

  (34) 
 
 

where I(t) denotes the source current that is being evaluated. Effectively, this computes the variance that cannot be explained 
by any of the three remaining source currents. Importantly, this metric can be computed at individual time points. We 
normalized each calculation by the sum of the four unique variances at each time point to give a proportion of unique variance 
explained by each source current. For cleaner presentation, we smoothed these normalized traces with a Gaussian kernel of 
width 500 ms (Figure 4h). We then reduced the dimensionality of all sixteen source currents using PCA, selecting a 5-
dimensional manifold which sufficed to explain more than 80% of the total variance in all source currents. We trained Wiener 
cascade filters, a type of linear-nonlinear decoder85, to predict the running speed using the five-dimensional activity of each 
source current at each time step as well as the most recent 5 time steps of history. To perform cross validation, we randomly 
withheld 20% of time steps (the test set) and trained the decoders using the remaining 80% of the data. We quantified the 
performance of each decoder output on the left-out test set of time steps using VAF, as described above. We repeated this 
process for 100 iterations, randomly leaving out 20% of time steps for the test set on each iteration, and averaged across all 
iterations for the final decoder performance (Figure 4k-l). 
 
Multi-region electrophysiology recordings in monkeys 
Behavioral task 
All procedures were reviewed and approved by the Icahn School of Medicine Animal Care and Use Committee. For detailed 
descriptions of the experimental setup and protocol, see Ref. 38, where these data were previously reported. In brief, two rhesus 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 21, 2020. ; https://doi.org/10.1101/2020.12.18.423348doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.18.423348
http://creativecommons.org/licenses/by-nc-nd/4.0/


macaque monkeys (Macaca mulatta; Monkey D: female, 5.6 kg; Monkey H: Male, 11.0 kg) were trained to sit in a custom 
primate chair with their head restrained and fixate on a computer monitor for four seconds, before performing a Pavlovian 
conditioning task for liquid rewards. They fixated on a neutral gray square for 800-1000ms. They were then presented with one 
of three visual conditioned stimuli for 500-600 ms on each trial corresponding to three different reward outcomes: no reward 
(CS-), water (0.5 mL), and juice (0.5 mL). An additional trial type occurred with equal frequency in which no conditioned 
stimuli was presented, and the gray square persisted throughout the trial. On all trials, a small (0.1 mL) water reward was given 
two seconds after the stimulus onset. Conditioned stimuli varied between monkeys and consisted of gray shapes, covering 1.10° 
of visual angle for Monkey D and 2.45° for Monkey H. We trained the Model RNNs described below using all four trial types 
to utilize as much training data as possible, though in this paper we only analyzed the CURBD output for the three stimuli. 
 
Surgical procedures and neural recordings 
After training, each monkey was implanted with a titanium head restraint device followed by a plastic recording chamber over 
the exposed cranium of the left frontal lobe. During the behavioral experiments, tungsten microelectrodes (FHC, Inc. or Alpha 
Omega, 0.5-1.5 M at 1 KHz) or 16-channel multi-contact linear arrays (Neuronexus Vector array) advanced by an 8-channel 
micromanipulator (NAN instruments, Nazareth, Israel) were attached to the recording chamber and inserted into the brain. The 
targeted brain regions were located using stereotaxic coordinates and verified by T1-weighted MRI imaging with the electrodes 
implanted. Recordings from subcallosal ACC were made on the medial surface of the brain ventral corpus callosum. Amygdala 
recordings were made between 22 and 18.5 mm anterior to the interaural plane. Rostromedial striatum recordings were made 
in the anterior medial segment corresponding to the zone where subcallosal and basal amygdala projections overlap. Spikes 
from putative single neurons were captured online using a Plexon Multichannel Acquisition Processor and later isolated with 
Plexon Offline Sorter. The small number of neurons recorded in each experimental session were then pooled into a 
pseudopopulation. First, the spike trains for each neuron on each trial were converted to an estimated firing rate. The firing 
rates were aligned on the stimulus presentation for each trial, then averaged across all trials of each stimulus type for that 
session in each monkey to give substantially large pseudopopulations (Table 5). As with the mouse dataset, neural activity was 
visualized with a heatmap after scaling each neuron’s firing rate by its mean activity (Figures 5b, S6). 
 

Table 5. Pseudopopulation sizes for the monkey dataset. 

Brain Region Monkey D Monkey H  

Amygdala 128 66 

Subcallosal ACC 112 50 

Striatum 103 83 

Total 343 199 
 
CURBD analysis of monkey dataset 
For each monkey, we trained Model RNNs (Monkey D: 343 units; Monkey H: 199 units) to match the pseudopopulation data 
for all four conditions. We used identical parameters for the Model RNNs for both monkeys (Table 2). In the previous 
simulations and the mouse dataset, the Model RNN learned a single dynamical system that reproduces the neural data based 
on one initial condition. However, here we have four different initial conditions corresponding to the four trial types, and we 
seek to learn a single dynamical system that reproduces all of them. To achieve this, we concatenated the time-series data from 
the four conditions and reset the state of the Model RNN to match the real neural data at the first time point of each new 
condition. We repeated each Model RNN fit an additional four times, yielding five runs in total, each starting from a different 
randomly initialized matrix J0 each time. We performed CURBD using each Model RNN to infer the nine source currents 
comprising the full multi-region activity. We then quantified the magnitude of current arriving to each source region from each 
target region by summing the absolute value of the source currents at each time step. We averaged this across the five runs in 
each monkey to assess the consistency of our solutions (Figure 5f-g). 
 
We performed systematic subsampling analyses to assess whether applying CURBD to pseudopopulation data would be 
reliable even if different numbers and types of neurons were recorded experimentally. We randomly subsampled between 50% 
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and 90% of the available neurons to create new, smaller pseudopopulations for each monkey. We used CCA (similar to the 
description in X above) to compute a similarity metric between the currents inferred by CURBD from each subsampled 
population and the currents originally inferred by CURBD using all of the available neurons for each monkey (Figure S7). 
 
Multi-region electrophysiology recordings in humans 
Behavioral task 
The institutional review boards of Cedars-Sinai Medical Center and the California Institute of Technology approved all 
protocols. Detailed descriptions of the experimental procedures are described in 40, where these data were previously reported. 
In brief, we recorded from 13 adult participants being evaluated for surgical treatment of drug-resistant epilepsy that provided 
informed consent and volunteered for this study. Of these thirteen participants, eight did not have a sufficiently large number 
of neurons to create a population for CURBD and were thus excluded. Our final analyses focused on five participants (P44, 
P51, P56, P57, and P58 from the original manuscript). The participants were seated in a chair facing a screen and reported 
decisions using either button presses or eye movements. They each performed eight forty-trial blocks that alternated between 
two tasks. In the categorization task, participants classified pseudorandomly presented images as belonging to one of four target 
categories (human faces, monkey faces, fruits, or cars) with a “yes” or “no” response. In the memory task, participants were 
shown an image and asked “Have you seen this image before, yes or no?” to which they responded “yes” or “no”. In the first 
block, all images were necessarily novel (40 unique images). In all subsequent blocks, the participants viewed 20 new images 
that were randomly intermixed with 20 familiar images. The 20 repeated images remained the same throughout the remainder 
of the session. We ignored trials where the participant provided an incorrect response (e.g. mistakenly identifying a novel image 
as familiar). This gave sixteen different conditions: four blocks of trials for each of two different tasks, each with correct “yes” 
and “no” responses. Participant task performance tended to improve throughout the session. Thus, we primarily focused our 
analysis on blocks 4, 6, and 8 (the final three memory blocks) when performance was highest. 
 
Neural recordings 
As participants performed this task, we recorded bilaterally from the amygdala, hippocampus, pre-supplementary motor area 
(preSMA), and dorsal anterior cingulate cortex (dACC) of each participant using microwires embedded in a hybrid electrode41. 
Electrode locations were confirmed using post-operative MRI or CT scans. We identified putative single neurons using a semi-
automated spike sorting procedure. For the purposes of the CURBD analyses, we pooled recordings from each region from 
either hemisphere to ensure that we had sufficiently large populations for the dimensionality-reduction analysis. We estimated 
the instantaneous firing rate of each recorded neuron by convolving the spike train with a Gaussian kernel of width 150 ms. 
The relatively large width was necessary to accurately estimate firing rates for many low-firing neurons in the hippocampus 
and amygdala, and we opted to use a uniform width for all neurons. We created pseudopopulations by aligning each trial on 
the time of stimulus presentation and averaging across all trials for each task and correct response type (Table 6). In each trial, 
we kept two seconds before the stimulus presentation and three second after the stimulus presentation. As with the previous 
datasets, neural activity was visualized with a heatmap after scaling each neuron’s activity by its mean (Figures 6f, S8). 
 

Table 6. Pseudopopulation sizes for the human dataset, reported as: Left Hemisphere / Right Hemisphere (Total). 

Brain Region P44 
(two sessions) 

P51 
(five sessions) 

P56 
(three sessions) 

P57 
(three sessions) 

P58 
(three sessions) 

Hippocampus 0 / 15 (15) 25 / 38 (63) 5 / 0 (5) 17 / 0 (17) 5 / 0 (5) 

Amygdala 3 / 1 (4) 2 / 22 (24) 33 / 43 (76) 36 / 34 (70) 54 / 61 (115) 

preSMA 62 / 0 (62) 16 / 7 (23) 8 / 14 (22) 48 / 0 (48) 65 / 72 (137) 

dACC 37 / 0 (37) 72 / 17 (89) 0 / 9 (9) 43 / 0 (43) 7 / 59 (66) 

Total 102 / 16 (118) 115 / 84 (199) 46 / 66 (112) 144 / 34 (178) 131 / 192 (323) 
 
CURBD analysis of human dataset 
We trained Model RNNs based on the spiking pseudopopulation data from all sixteen conditions for each participant. As with 
the monkeys, we compensated for the discontinuities at trial boundaries by resetting the state of the Model RNN at the start of 
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each condition. We used the same Model RNN parameters for all participants to ensure consistency (Table 2). We applied 
CURBD to infer the nine source currents comprising the multi-region interactions in the dataset. We reduced the dimensionality 
of each source current, as well as the full population activity of each region, using PCA. Since the stimulus was presented two 
seconds after the start of the trials, we defined the first two seconds to be the ‘resting state’ (Figure 6g). We then computed the 
Mahalanobis distance of each source current at each time step. This gave a time-varying estimate of how much the population 
activity or source currents responded to the stimulus. For each participant, we averaged across all five training runs to obtain 
the most reliable estimate of the current dynamics. We then averaged across all participants to show the group effect (Figure 
6h). 
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Figure S1. Supporting data for three-region ground truth simulation. (a) Analysis of source currents within Region B. 
Data presented as in Figure 3d. Currents from Region B and Region C are accurately reconstructed, though currents 
from Region A are missed, presumably due to the lack of strong external drive to Region A and the similar intrinsic 
dynamics between the three regions (VAFAtoB<0; VAFBtoB=0.98; VAFCtoB=0.94). (b) Analysis of source currents within 
Region C. Data presented as in Figure 3d. All three source currents are accurately reconstructed (VAFAtoC=0.61; 
VAFBtoC=0.60; VAFCtoC=0.99). 
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Figure S2. Decomposition of ground truth simulation using canonical correlation analysis. (a) CCA finds a single space 
capturing shared dynamics between each region, with a linear transformation (provided by the weight matrices w) 
relating each source and target region. However it does not provide a directional estimate of interactions. The shared 
dynamics plots show the aligned trajectories between pairs of regions projected onto the leading two aligned 
components. (b) Comparison of ground truth current inputs and shared dynamics identified by CCA. Unlike CURBD, 
the shared dynamics identified by CCA do not accurately match the ground truth current dynamics (VAFAandA<0; 
VAFBandA<0; VAFCandA<0). 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 21, 2020. ; https://doi.org/10.1101/2020.12.18.423348doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.18.423348
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Figure S3. CURBD separates external inputs driving two interacting regions within specific dynamical regimes. (a) We 
simulated two interconnected RNNs representing distinct brain regions. Each was driven by a sinusoid of different 
frequencies. (b-c) We fit a Model RNN directly to the time-series data of the two regions to perform CURBD. From the 
Model RNN we obtained a matrix describing the directed interactions within and between each of the two regions. (d) 
We applied CURBD to obtain the currents driving each neuron in Region A from other Region A neurons (top) and from 
region B (bottom). (e) We performed PCA to identify the dominant component of each source current. The currents from 
Region A resembled the low-frequency sinusoid driving Region A, while the currents from Region B matched the higher-
frequency sinusoid driving Region B. (f) We computed R2 values comparing the first PC of each source current to the 
two sinusoidal inputs. (g) Reconstruction accuracy of B to A currents for different simulation parameter values. We 
explored three key simulation parameters: i) the amount of chaos (g parameter; see Methods) from overdamped (g<1) 
to strongly chaotic (g>1.5); ii) the strength of the external inputs driving the system from very weak (0.001) to very strong 
(1); iii) the sparsity of inter-region connections from very sparse (1%) to full-rank (100%). Each heatmap shows the 
strength of inter-region connections against the percent of neurons receiving inter-region connections, and heatmaps 
going left to right show increasing gA. For low values of gA corresponding to damped dynamics, the inputs can only be 
reconstructed with strong connectivity. When both regions have similar dynamics (gA = 1.3) the currents cannot be 
accurately demixed. The optimal regime occurs when gA and gB have different dynamics, with a tradeoff between sparsity 
and strength of the inter-region connectivity. 
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Figure S4. Supporting data for the multi-region mouse dataset. (a) Model RNN activity and source current activity for 
Mouse A. Figures reproduced from Figure 4g. (b) Current trajectories in the first three PCs for all sixteen source currents 
from Mouse A. The V1 source currents (top row) are reproduced from Figure 4h. (c) Data presented as in Panel a for 
Mouse B. (d) Data presented as in Panel b for Mouse B. 
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Figure S5. All recording sessions for the mouse dataset. (a) (Top) Model RNN output (left) and training performance 
(right) for the session from Mouse A. (Bottom) Decoding performance for the sixteen source currents. All data are 
reproduced from Figure 4. (b) (Top) Model RNN output (left) and training performance (right) for Session 1 from Mouse 
B. (Bottom) Decoding performance for the sixteen source currents. Portions are reproduced from Figure 4. (c) (Top) 
Model RNN output (left) and training performance (right) for Session 2 from Mouse B. (Bottom) Decoding performance 
for the sixteen source currents. 
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Figure S6. Supporting data for the multi-region macaque electrophysiology dataset. (a) Connectivity matrix for an 
example Model RNN fit to data from Monkey D. Neurons are ordered by region, starting with amygdala (Amy, blue), 
subcallosal anterior cingulate cortex (ACC, yellow), and rostromedial striatum (Str, red). (b) (Top) Proportion of variance 
explained (pVar) in the neural population as a function of training runs. Training results for five different random 
initializations are plotted to highlight consistency. (Bottom) Model error (𝝌2) for the five initializations shown above. (c) 
Distribution of weights in each submatrix used for CURBD. Each column corresponds to a source region, and each row 
to a target region. All five initializations are plotted to illustrate consistency. (d) Trial-averaged firing rates for the amygdala 
(top), subcallosal ACC (middle), and striatum (bottom) comprising the pseudopopulation dataset for Monkey D. Left plot 
shows data from the unconditioned stimulus (left), water stimulus (middle), and juice stimulus (right). All trials are aligned 
on presentation of the stimulus. Neurons in each region are sorted according to their time of peak activity in the Juice 
condition. (e) CURBD decomposition of activity in each region for the Juice trials. Left plots show the full Model RNN 
activity. The remaining plots show the inferred source currents to each target region (rows) from all source regions 
(columns). (f-j) Data for Monkey H presented as in Panels a-e. 
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Figure S7. Consistent identification of current dynamics with random subsamples of recorded neurons. Mean canonical 
correlation in a twenty-dimensional space identified by PCA for each source current in Monkey D (black) and Monkey H 
(gray). Small dots indicate the results of ten random subsamples of the total neural population at each percentage level. 
Large circles indicate the median across iterations. 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 21, 2020. ; https://doi.org/10.1101/2020.12.18.423348doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.18.423348
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Figure S8. Supporting data for the multi-region human electrophysiology dataset. (a) Model RNN summary for P44. (Top 
left) Model RNN training performance (pVar and 𝝌2) for five runs starting from different random initializations of the J 
matrix. (Bottom left) Example J matrix for one run. (Right) Neural activity from recorded neurons (Data) and the Model 
RNN units. (b) Data presented as in Panel a for P56. (c) Data presented as in Panel a for P57. (d) Data presented as in 
Panel a for P58. (e) Mahalanobis distance from rest for all sixteen source currents on the familiar stimuli trials (magenta) 
and novel stimuli trials (cyan). Lines show mean and standard error across all five participants. Black dot indicates time 
of stimulus presentation. Top row is reproduced from Figure 6h. 
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Figure S9. Comparison of current dynamics across tasks for the multi-region human electrophysiology dataset. (a) 
Neural and current dynamics for both tasks in P44. Each subplot shows the first two PCs of the full population activity of 
the three regions as well as the nine source currents during the categorization task (purple) and novel (cyan) and familiar 
(magenta) stimuli during the memory task. Gray shows activity at rest before the stimuli. (b) Neural and current dynamics 
for both tasks in P51. (c) Neural and current dynamics for both tasks in P56. (d) Neural and current dynamics for both 
tasks in P57. (e) Neural and current dynamics for both tasks in P58.  
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