35 research outputs found

    Prolonged Fever, Hepatosplenomegaly, and Pancytopenia in a 46-Year-Old Woman

    Get PDF
    Liran Levy and colleagues discuss the differential diagnosis, investigation, and management of a 46-year-old woman with fever, weakness, night sweats, and weight loss

    Single cell dissection of plasma cell heterogeneity in symptomatic and asymptomatic myeloma

    Get PDF
    Multiple myeloma, a plasma cell malignancy, is the second most common blood cancer. Despite extensive research, disease heterogeneity is poorly characterized, hampering efforts for early diagnosis and improved treatments. Here, we apply single cell RNA sequencing to study the heterogeneity of 40 individuals along the multiple myeloma progression spectrum, including 11 healthy controls, demonstrating high interindividual variability that can be explained by expression of known multiple myeloma drivers and additional putative factors. We identify extensive subclonal structures for 10 of 29 individuals with multiple myeloma. In asymptomatic individuals with early disease and in those with minimal residual disease post-treatment, we detect rare tumor plasma cells with molecular characteristics similar to those of active myeloma, with possible implications for personalized therapies. Single cell analysis of rare circulating tumor cells allows for accurate liquid biopsy and detection of malignant plasma cells, which reflect bone marrow disease. Our work establishes single cell RNA sequencing for dissecting blood malignancies and devising detailed molecular characterization of tumor cells in symptomatic and asymptomatic patients

    Melflufen or pomalidomide plus dexamethasone for patients with multiple myeloma refractory to lenalidomide (OCEAN): a randomised, head-to-head, open-label, phase 3 study

    Get PDF
    Background Melphalan flufenamide (melflufen), an alkylating peptide-drug conjugate, plus dexamethasone showed clinical activity and manageable safety in the phase 2 HORIZON study. We aimed to determine whether melflufen plus dexamethasone would provide a progression-free survival benefit compared with pomalidomide plus dexamethasone in patients with previously treated multiple myeloma. Methods In this randomised, open-label, head-to-head, phase 3 study (OCEAN), adult patients (aged ≥18 years) were recruited from 108 university hospitals, specialist hospitals, and community-based centres in 21 countries across Europe, North America, and Asia. Eligible patients had an ECOG performance status of 0–2; must have had relapsed or refractory multiple myeloma, refractory to lenalidomide (within 18 months of randomisation) and to the last line of therapy; and have received two to four previous lines of therapy (including lenalidomide and a proteasome inhibitor). Patients were randomly assigned (1:1), stratified by age, number of previous lines of therapy, and International Staging System score, to either 28-day cycles of melflufen and dexamethasone (melflufen group) or pomalidomide and dexamethasone (pomalidomide group). All patients received dexamethasone 40 mg orally on days 1, 8, 15, and 22 of each cycle. In the melflufen group, patients received melflufen 40 mg intravenously over 30 min on day 1 of each cycle and in the pomalidomide group, patients received pomalidomide 4 mg orally daily on days 1 to 21 of each cycle. The primary endpoint was progression-free survival assessed by an independent review committee in the intention-to-treat (ITT) population. Safety was assessed in patients who received at least one dose of study medication. This study is registered with ClinicalTrials.gov, NCT03151811, and is ongoing. Findings Between June 12, 2017, and Sept 3, 2020, 246 patients were randomly assigned to the melflufen group (median age 68 years [IQR 60–72]; 107 [43%] were female) and 249 to the pomalidomide group (median age 68 years [IQR 61–72]; 109 [44%] were female). 474 patients received at least one dose of study drug (melflufen group n=228; pomalidomide group n=246; safety population). Data cutoff was Feb 3, 2021. Median progression-free survival was 6·8 months (95% CI 5·0–8·5; 165 [67%] of 246 patients had an event) in the melflufen group and 4·9 months (4·2–5·7; 190 [76%] of 249 patients had an event) in the pomalidomide group (hazard ratio [HR] 0·79, [95% CI 0·64–0·98]; p=0·032), at a median follow-up of 15·5 months (IQR 9·4–22·8) in the melflufen group and 16·3 months (10·1–23·2) in the pomalidomide group. Median overall survival was 19·8 months (95% CI 15·1–25·6) at a median follow-up of 19·8 months (IQR 12·0–25·0) in the melflufen group and 25·0 months (95% CI 18·1–31·9) in the pomalidomide group at a median follow-up of 18·6 months (IQR 11·8–23·7; HR 1·10 [95% CI 0·85–1·44]; p=0·47). The most common grade 3 or 4 treatment-emergent adverse events were thrombocytopenia (143 [63%] of 228 in the melflufen group vs 26 [11%] of 246 in the pomalidomide group), neutropenia (123 [54%] vs 102 [41%]), and anaemia (97 [43%] vs 44 [18%]). Serious treatment-emergent adverse events occurred in 95 (42%) patients in the melflufen group and 113 (46%) in the pomalidomide group, the most common of which were pneumonia (13 [6%] vs 21 [9%]), COVID-19 pneumonia (11 [5%] vs nine [4%]), and thrombocytopenia (nine [4%] vs three [1%]). 27 [12%] patients in the melflufen group and 32 [13%] in the pomalidomide group had fatal treatment-emergent adverse events. Fatal treatment-emergent adverse events were considered possibly treatment related in two patients in the melflufen group (one with acute myeloid leukaemia, one with pancytopenia and acute cardiac failure) and four patients in the pomalidomide group (two patients with pneumonia, one with myelodysplastic syndromes, one with COVID-19 pneumonia). Interpretation Melflufen plus dexamethasone showed superior progression-free survival than pomalidomide plus dexamethasone in patients with relapsed or refractory multiple myeloma.Oncopeptides ABPeer reviewe

    Learning from Patients: The Interplay between Clinical and Laboratory Research in AL Amyloidosis

    No full text
    Primary systemic light chain amyloidosis (AL) is a rare monoclonal plasma cell disorder. Much research has been performed to determine the factors that underly amyloidogenicity. However, there is increasing evidence that the primary clone, and also patient-related factors, influence the mechanism and rate of the process. The lessons learnt from patient care definitely imply that this is not solely due to the deposition of material in the tissues that cause organ injury but amyloid light chain precursors are likely to mediate cellular toxicity. The disease rarity, combined with the lack of in vitro tools, and that multi-organ failure has a wide clinical spectrum, result in investigative challenges and treatment limitations (due to AL patient frailty). All these characteristics make the disease difficult to diagnose and indicate the need to further study its origins and treatments. This review will focus on the various aspects of the amyloidogenic plasma cell clone, as learnt from the patient care and clinics, and its implications on basic as well as clinical trials of AL research. Details regarding the etiology of the plasma cell clone, understanding the diagnosis of AL, and improvement of patient care with specific consideration of the future perspectives of individualized patient therapy will be described

    Learning from Patients: The Interplay between Clinical and Laboratory Research in AL Amyloidosis

    No full text
    Primary systemic light chain amyloidosis (AL) is a rare monoclonal plasma cell disorder. Much research has been performed to determine the factors that underly amyloidogenicity. However, there is increasing evidence that the primary clone, and also patient-related factors, influence the mechanism and rate of the process. The lessons learnt from patient care definitely imply that this is not solely due to the deposition of material in the tissues that cause organ injury but amyloid light chain precursors are likely to mediate cellular toxicity. The disease rarity, combined with the lack of in vitro tools, and that multi-organ failure has a wide clinical spectrum, result in investigative challenges and treatment limitations (due to AL patient frailty). All these characteristics make the disease difficult to diagnose and indicate the need to further study its origins and treatments. This review will focus on the various aspects of the amyloidogenic plasma cell clone, as learnt from the patient care and clinics, and its implications on basic as well as clinical trials of AL research. Details regarding the etiology of the plasma cell clone, understanding the diagnosis of AL, and improvement of patient care with specific consideration of the future perspectives of individualized patient therapy will be described

    Understanding the Bioactivity and Prognostic Implication of Commonly Used Surface Antigens in Multiple Myeloma

    No full text
    Multiple myeloma (MM) progression is dependent on its interaction with the bone marrow microenvironment and the immune system and is mediated by key surface antigens. Some antigens promote adhesion to the bone marrow matrix and stromal cells, while others are involved in intercellular interactions that result in differentiation of B-cells to plasma cells (PC). These interactions are also involved in malignant transformation of the normal PC to MM PC as well as disease progression. Here, we review selected surface antigens that are commonly used in the flow cytometry analysis of MM for identification of plasma cells (PC) and the discrimination between normal and malignant PC as well as prognostication. These include the markers: CD38, CD138, CD45, CD19, CD117, CD56, CD81, CD27, and CD28. Furthermore, we will discuss the novel marker CD24 and its involvement in MM. The bioactivity of each antigen is reviewed, as well as its expression on normal vs. malignant PC, prognostic implications, and therapeutic utility. Understanding the role of these specific surface antigens, as well as complex co-expressions of combinations of antigens, may allow for a more personalized prognostic monitoring and treatment of MM patients
    corecore