4,061 research outputs found

    The observation of possible reconnection events in the boundary changes of solar coronal holes

    Get PDF
    Coronal holes are large scale regions of magnetically open fields which are easily observed in solar soft X-ray images. The boundaries of coronal holes are separatrices between large scale regions of open and closed magnetic fields where one might expect to observe evidence of solar magnetic reconnection. Previous studies by Nolte and colleagues using Skylab X-ray images established that large scale (greater than or equal to 9 x 10(4) km) changes in coronal hole boundaries were due to coronal processes, i.e., magnetic reconnection, rather than to photospheric motions. Those studies were limited to time scales of about one day, and no conclusion could be drawn about the size and time scales of the reconnection process at hole boundaries. Sequences of appropriate Skylab X-ray images were used with a time resolution of about 90 min during times of the central meridian passages of the coronal hole labelled Coronal Hole 1 to search for hole boundary changes which can yield the spatial and temporal scales of coronal magnetic reconnection. It was found that 29 of 32 observed boundary changes could be associated with bright points. The appearance of the bright point may be the signature of reconnection between small scale and large scale magnetic fields. The observed boundary changes contributed to the quasi-rigid rotation of Coronal Hole 1

    Predicting Tail Buffet Loads of a Fighter Airplane

    Get PDF
    Buffet loads on aft aerodynamic surfaces pose a recurring problem on most twin-tailed fighter airplanes: During maneuvers at high angles of attack, vortices emanating from various surfaces on the forward parts of such an airplane (engine inlets, wings, or other fuselage appendages) often burst, immersing the tails in their wakes. Although these vortices increase lift, the frequency contents of the burst vortices become so low as to cause the aft surfaces to vibrate destructively. Now, there exists a new analysis capability for predicting buffet loads during the earliest design phase of a fighter-aircraft program. In effect, buffet pressures are applied to mathematical models in the framework of a finite-element code, complete with aeroelastic properties and working knowledge of the spatiality of the buffet pressures for all flight conditions. The results of analysis performed by use of this capability illustrate those vibratory modes of a tail fin that are most likely to be affected by buffet loads. Hence, the results help in identifying the flight conditions during which to expect problems. Using this capability, an aircraft designer can make adjustments to the airframe and possibly the aerodynamics, leading to a more robust design

    A Tail Buffet Loads Prediction Method for Aircraft at High Angles of Attack

    Get PDF
    Aircraft designers commit significant resources to the design of aircraft in meeting performance goals. Despite fulfilling traditional design requirements, many fighter aircraft have encountered buffet loads when demonstrating their high angle-of-attack maneuver capabilities. As a result, during test or initial production phases of fighter development programs, many new designs are impacted, usually in a detrimental way, by resulting in reassessing designs or limiting full mission capability. These troublesome experiences usually stem from overlooking or completely ignoring the effects of buffet during the design phase of aircraft. Perhaps additional requirements are necessary that addresses effects of buffet in achieving best aircraft performance in fulfilling mission goals. This paper describes a reliable, fairly simple, but quite general buffet loads analysis method to use in the initial design phases of fighter-aircraft development. The method is very similar to the random gust load analysis that is now commonly available in a commercial code, which this analysis capability is based, with some key modifications. The paper describes the theory and the implementation of the methodology. The method is demonstrated on a JSF prototype example problem. The demonstration also serves as a validation of the method, since, in the paper, the analysis is shown to nearly match the flight data. In addition, the paper demonstrates how the analysis method can be used to assess candidate design concepts in determining a satisfactory final aircraft configuration

    A Method to Analyze Tail Buffet Loads of Aircraft

    Get PDF
    Aircraft designers commit significant resources to the design of aircraft in meeting performance goals. Despite fulfilling traditional design requirements, many fighter aircraft have encountered buffet loads when demonstrating their high angle-of-attack maneuver capabilities. As a result, during test or initial production phases of fighter development programs, many new designs are impacted, usually in a detrimental way, by resulting in reassessing designs or limiting full mission capability. These troublesome experiences usually stem from overlooking or completely ignoring the effects of buffet during the design phase of aircraft. Perhaps additional requirements are necessary that addresses effects of buffet in achieving best aircraft performance in fulfilling mission goals. This paper describes a reliable, fairly simple, but quite general buffet loads analysis method to use in the initial design phases of fighter-aircraft development. The method is very similar to the random gust load analysis that is now commonly available in a commercial code, which this analysis capability is based, with some key modifications. The paper describes the theory and the implementation of the methodology. The method is demonstrated on a JSF prototype example problem. The demonstration also serves as a validation of the method, since, in the paper, the analysis is shown to nearly match the flight data. In addition, the paper demonstrates how the analysis method can be used to assess candidate design concepts in determining a satisfactory final aircraft configuration

    ICE/ISEE plasma wave data analysis

    Get PDF
    This report is one of the final processing of ICE plasma wave (pw) data and analysis of late ISEE 3, ICE cometary, and ICE cruise trajectory data, where coronal mass ejections (CME's) were the first locus of attention. Interest in CME's inspired an effort to represent our pw data in a condensed spectrogram format that facilitated rapid digestion of interplanetary phenomena on long (greater than 1 day) time scales. The format serendipitously allowed us to also examine earth-orbiting data from a new perspective, invigorating older areas of investigation in Earth's immediate environment. We, therefore, continued to examine with great interest the last year of ISEE 3's precomet phase, when it spent considerable time far downwind from Earth, recording for days on end conditions upstream, downstream, and across the very weak, distant flank bow shock. Among other motivations has been the apparent similarity of some shock and post shock structures to the signatures of the bow wave surrounding comet Giacobini-Zinner, whose ICE-phase data we revisited

    Surveyor batteries Final engineering report

    Get PDF
    Design and performance of Surveyor spacecraft silver-zinc main batter

    Large scale motions of Neptune's bow shock: Evidence for control of the shock position by the rotation phase of Neptune's magnetic field

    Get PDF
    The Voyager 2 spacecraft observed high levels of Langmuir waves before the inbound crossing of Neptune's bow shock, thereby signifying magnetic connection of the bow shock. The Langmuir waves occurred in multiple bursts throughout two distinct periods separated by an 85 minute absence of wave activity. The times of onsets, peaks, and disappearances of the waves were used together with the magnetic field directions and spacecraft position, to perform a 'remote-sensing' analysis of the shape and location of Neptune's bow shock prior to the inbound bow shock crossing. The bow shock is assumed to have a parabolidal shape with a nose location and flaring parameter determined independently for each wave event. The remote-sensing analysis give a shock position consistent with the time of the inbound shock crossing. The flaring parameter of the shock remains approximately constant throughout each period of wave activity but differs by a factor of 10 between the two periods. The absence of waves between two periods of wave activity coincides with a large rotation of the magnetic field and a large increase in the solar wind ram pressure' both these effects lead to magnetic disconnection of the spacecraft from shock. The planetwards motion of the shock's nose from 38.5 R(sub N) to 34.5 R(sub N) during the second time period occurred while the solar wind ram pressure remained constant to within 15 percent. This second period of planetwards motion of the shock is therefore strong evidence for Neptune's bow shock moving in response to the rotation of Neptune's oblique, tilted magnetic dipole. Normalizing the ram pressure, the remotely-sensed shock moves sunwards during the first wave period and planetwards in the second wave period. The maximum standoff distance occurs while the dipole axis is close to being perpendicular to the Sun-Neptune direction. The remote-sensing analysis provides strong evidence that the location of Neptune's bow shock is controlled by Neptune's rotation phase

    Unconventional Planar Hall Effect in Exchange-Coupled Topological Insulator-Ferromagnetic Insulator Heterostructures

    Full text link
    The Dirac electrons occupying the surface states (SSs) of topological insulators (TIs) have been predicted to exhibit many exciting magneto-transport phenomena. Here we report on the first experimental observation of an unconventional planar Hall effect (PHE) and an electrically gate-tunable hysteretic planar magnetoresistance (PMR) in EuS/TI heterostructures, in which EuS is a ferromagnetic insulator (FMI) with an in-plane magnetization. In such exchange-coupled FMI/TI heterostructures, we find a significant (suppressed) PHE when the in-plane magnetic field is parallel (perpendicular) to the electric current. This behavior differs from previous observations of the PHE in ferromagnets and semiconductors. Furthermore, as the thickness of the 3D TI films is reduced into the 2D limit, in which the Dirac SSs develop a hybridization gap, we find a suppression of the PHE around the charge neutral point indicating the vital role of Dirac SSs in this phenomenon. To explain our findings, we outline a symmetry argument that excludes linear-Hall mechanisms and suggest two possible non-linear Hall mechanisms that can account for all the essential qualitative features in our observations.Comment: 17 pages, 4 figures, accepted by Phys. Rev.

    Temperature dependence of the interlayer magnetoresistance of quasi-one-dimensional Fermi liquids at the magic angles

    Full text link
    The interlayer magnetoresistance of a quasi-one-dimensional Fermi liquid is considered for the case of a magnetic field that is rotated within the plane perpendicular to the most-conducting direction. Within semi-classical transport theory dips in the magnetoresistance occur at integer amgic angles only when the electronic dispersion parallel to the chains is nonlinear. If the field direction is fixed at one of the magic angles and the temperature is varied the resulting variation of the scattering rate can lead to a non-monotonic variation of the interlayer magnetoresistance with temperature. Although the model considered here gives a good description of some of the properties of the Bechgaard salts, (TMTSF)2PF6 for pressures less than 8kbar and (TMTSF)2ClO4 it gives a poor description of their properties when the field is parallel to the layers and of the intralayer transport.Comment: 10pages, RevTeX + epsf, 3 figure

    Off-lining to tape is not archiving: Why we need real archiving to support media archaeology and ensure our visual effects legacy thrives

    Full text link
    © 2019 ISAST This paper examines digital asset archiving and preservation practice in the visual effects (VFX) industry. The authors briefly summarize media archaeology theory and provide an overview of how VFX studios presently archive project assets and records, based on case study and interview research conducted with expert VFX practitioners from leading international studios. In addition, the authors propose that current practice could be improved by adopting archival science methods, including digital preservation practices. Doing so will support media archaeology studies of digital cultures over time and ensure that the legacy of VFX creative and technical production thrives for future generations
    corecore