research

Large scale motions of Neptune's bow shock: Evidence for control of the shock position by the rotation phase of Neptune's magnetic field

Abstract

The Voyager 2 spacecraft observed high levels of Langmuir waves before the inbound crossing of Neptune's bow shock, thereby signifying magnetic connection of the bow shock. The Langmuir waves occurred in multiple bursts throughout two distinct periods separated by an 85 minute absence of wave activity. The times of onsets, peaks, and disappearances of the waves were used together with the magnetic field directions and spacecraft position, to perform a 'remote-sensing' analysis of the shape and location of Neptune's bow shock prior to the inbound bow shock crossing. The bow shock is assumed to have a parabolidal shape with a nose location and flaring parameter determined independently for each wave event. The remote-sensing analysis give a shock position consistent with the time of the inbound shock crossing. The flaring parameter of the shock remains approximately constant throughout each period of wave activity but differs by a factor of 10 between the two periods. The absence of waves between two periods of wave activity coincides with a large rotation of the magnetic field and a large increase in the solar wind ram pressure' both these effects lead to magnetic disconnection of the spacecraft from shock. The planetwards motion of the shock's nose from 38.5 R(sub N) to 34.5 R(sub N) during the second time period occurred while the solar wind ram pressure remained constant to within 15 percent. This second period of planetwards motion of the shock is therefore strong evidence for Neptune's bow shock moving in response to the rotation of Neptune's oblique, tilted magnetic dipole. Normalizing the ram pressure, the remotely-sensed shock moves sunwards during the first wave period and planetwards in the second wave period. The maximum standoff distance occurs while the dipole axis is close to being perpendicular to the Sun-Neptune direction. The remote-sensing analysis provides strong evidence that the location of Neptune's bow shock is controlled by Neptune's rotation phase

    Similar works