84 research outputs found

    Impacts of environmental and socio-economic factors on emergence and epidemic potential of Ebola in Africa

    Get PDF
    Abstract: Recent outbreaks of animal-borne emerging infectious diseases have likely been precipitated by a complex interplay of changing ecological, epidemiological and socio-economic factors. Here, we develop modelling methods that capture elements of each of these factors, to predict the risk of Ebola virus disease (EVD) across time and space. Our modelling results match previously-observed outbreak patterns with high accuracy, and suggest further outbreaks could occur across most of West and Central Africa. Trends in the underlying drivers of EVD risk suggest a 1.75 to 3.2-fold increase in the endemic rate of animal-human viral spill-overs in Africa by 2070, given current modes of healthcare intervention. Future global change scenarios with higher human population growth and lower rates of socio-economic development yield a 1.63-fold higher likelihood of epidemics occurring as a result of spill-over events. Our modelling framework can be used to target interventions designed to reduce epidemic risk for many zoonotic diseases

    Shedding of soluble glycoprotein 1 detected during acute Lassa virus infection in human subjects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lassa hemorrhagic fever (LHF) is a neglected tropical disease with significant impact on the health care system, society, and economy of Western and Central African nations where it is endemic. With a high rate of infection that may lead to morbidity and mortality, understanding how the virus interacts with the host's immune system is of great importance for generating vaccines and therapeutics. Previous work by our group identified a soluble isoform of the Lassa virus (LASV) GP1 (sGP1) <it>in vitro </it>resulting from the expression of the glycoprotein complex (GPC) gene <abbrgrp><abbr bid="B1">1</abbr><abbr bid="B2">2</abbr></abbrgrp>. Though no work has directly been done to demonstrate the function of this soluble isoform in arenaviral infections, evidence points to immunomodulatory effects against the host's immune system mediated by a secreted glycoprotein component in filoviruses, another class of hemorrhagic fever-causing viruses. A significant fraction of shed glycoprotein isoforms during viral infection and biogenesis may attenuate the host's inflammatory response, thereby enhancing viral replication and tissue damage. Such shed glycoprotein mediated effects were previously reported for Ebola virus (EBOV), a filovirus that also causes hemorrhagic fever with nearly 90% fatality rates <abbrgrp><abbr bid="B3">3</abbr><abbr bid="B4">4</abbr><abbr bid="B5">5</abbr></abbrgrp>. The identification of an analogous phenomenon <it>in vivo </it>could establish a new correlate of LHF infection leading to the development of sensitive diagnostics targeting the earliest molecular events of the disease. Additionally, the reversal of potentially untoward immunomodulatory functions mediated by sGP1 could potentiate the development of novel therapeutic intervention. To this end, we investigated the presence of sGP1 in the serum of suspected LASV patients admitted to the Kenema Government Hospital (KGH) Lassa Fever Ward (LFW), in Kenema, Sierra Leone that tested positive for viral antigen or displayed classical signs of Lassa fever.</p> <p>Results</p> <p>It is reasonable to expect that a narrow window exists for detection of sGP1 as the sole protein shed during early arenaviral biogenesis. This phenomenon was clearly distinguishable from virion-associated GP1 only prior to the emergence of <it>de novo </it>viral particles. Despite this restricted time frame, in 2/46 suspected cases in two studies performed in late 2009 and early 2010, soluble glycoprotein component shedding was identified. Differential detection of viral antigens GP1, GP2, and NP by western blot yielded five different scenarios: whole LASV virions (GP1, GP2, NP; i.e. active viremia), different combinations of these three proteins, sGP1 only, NP only, and absence of all three proteins. Four additional samples showed inconclusive evidence for sGP1 shedding due to lack of detection of GP2 and NP by western blot; however, a sensitive LASV NP antigen capture ELISA generated marginally positive signals</p> <p>Conclusions</p> <p>During a narrow window following active infection with LASV, soluble GP1 can be detected in patient sera. This phenomenon parallels other VHF infection profiles, with the actual role of a soluble viral glycoprotein component <it>in vivo </it>remaining largely speculative. The expenditure of energy and cellular resources toward secretion of a critical protein during viral biogenesis without apparent specific function requires further investigation. Future studies will be aimed at systematically identifying the role of LASV sGP1 in the infection process and outcome <it>in vitro </it>and <it>in vivo</it>.</p

    A Unified Framework for the Infection Dynamics of Zoonotic Spillover and Spread.

    Get PDF
    A considerable amount of disease is transmitted from animals to humans and many of these zoonoses are neglected tropical diseases. As outbreaks of SARS, avian influenza and Ebola have demonstrated, however, zoonotic diseases are serious threats to global public health and are not just problems confined to remote regions. There are two fundamental, and poorly studied, stages of zoonotic disease emergence: 'spillover', i.e. transmission of pathogens from animals to humans, and 'stuttering transmission', i.e. when limited human-to-human infections occur, leading to self-limiting chains of transmission. We developed a transparent, theoretical framework, based on a generalization of Poisson processes with memory of past human infections, that unifies these stages. Once we have quantified pathogen dynamics in the reservoir, with some knowledge of the mechanism of contact, the approach provides a tool to estimate the likelihood of spillover events. Comparisons with independent agent-based models demonstrates the ability of the framework to correctly estimate the relative contributions of human-to-human vs animal transmission. As an illustrative example, we applied our model to Lassa fever, a rodent-borne, viral haemorrhagic disease common in West Africa, for which data on human outbreaks were available. The approach developed here is general and applicable to a range of zoonoses. This kind of methodology is of crucial importance for the scientific, medical and public health communities working at the interface between animal and human diseases to assess the risk associated with the disease and to plan intervention and appropriate control measures. The Lassa case study revealed important knowledge gaps, and opportunities, arising from limited knowledge of the temporal patterns in reporting, abundance of and infection prevalence in, the host reservoir.Natural Environment Research Council (project no.: NEJ001570-1), Department for International Development, Economic and Social Research Council, National Institute for Health Research, Science and Technology Directorate, Department of Homeland Security, Fogarty International Center USA, European Union FP7 (project ANTIGONE (contract number 278976)), Royal Society (Wolfson Research Merit Award), Alborada Trust, US National Institute of Health (P20GM103501, BAANIAID-DAIT-NIHQI2008031, HHSN272201000022C, HHSN272200900049C, 1U19AI109762, 1R01AI104621, 2R44AI088843), USAID/NIH PEER Health grant.This is the final version of the article. It first appeared from the Public Library of Science via http://dx.doi.org/10.1371/journal.pntd.000495

    Using modelling to disentangle the relative contributions of zoonotic and anthroponotic transmission: the case of lassa fever.

    Get PDF
    BACKGROUND: Zoonotic infections, which transmit from animals to humans, form the majority of new human pathogens. Following zoonotic transmission, the pathogen may already have, or may acquire, the ability to transmit from human to human. With infections such as Lassa fever (LF), an often fatal, rodent-borne, hemorrhagic fever common in areas of West Africa, rodent-to-rodent, rodent-to-human, human-to-human and even human-to-rodent transmission patterns are possible. Indeed, large hospital-related outbreaks have been reported. Estimating the proportion of transmission due to human-to-human routes and related patterns (e.g. existence of super-spreaders), in these scenarios is challenging, but essential for planned interventions. METHODOLOGY/PRINCIPAL FINDINGS: Here, we make use of an innovative modeling approach to analyze data from published outbreaks and the number of LF hospitalized patients to Kenema Government Hospital in Sierra Leone to estimate the likely contribution of human-to-human transmission. The analyses show that almost [Formula: see text] of the cases at KGH are secondary cases arising from human-to-human transmission. However, we found much of this transmission is associated with a disproportionally large impact of a few individuals ('super-spreaders'), as we found only [Formula: see text] of human cases result in an effective reproduction number (i.e. the average number of secondary cases per infectious case) [Formula: see text], with a maximum value up to [Formula: see text]. CONCLUSIONS/SIGNIFICANCE: This work explains the discrepancy between the sizes of reported LF outbreaks and a clinical perception that human-to-human transmission is low. Future assessment of risks of LF and infection control guidelines should take into account the potentially large impact of super-spreaders in human-to-human transmission. Our work highlights several neglected topics in LF research, the occurrence and nature of super-spreading events and aspects of social behavior in transmission and detection.This work for the Dynamic Drivers of Disease in Africa Consortium, NERC project no. NE-J001570-1, was funded with support from the Ecosystem Services for Poverty Alleviation (ESPA) programme. The ESPA programme is funded by the Department for International Development (DFID), the Economic and Social Research Council (ESRC) and the Natural Environment Research Council (NERC). See more at: http://www.espa.ac.uk/about/identity/acknowledging-espafunding# sthash.UivKPObf.dpuf. GL, JLNW, AAC, CTW and EFC also benefit from the support of the small mammal disease working group, funded by the Research and Policy for Infectious Disease Dynamics (RAPIDD) programme of the Science and Technology Directorate, Department of Homeland Security, and Fogarty International Center, USA. JLNW and AC were also supported by the European Union FP7 project ANTIGONE (contract number 278976). AAC is supported by a Royal Society Wolfson Reearch Merit Award. JLNW is also supported by the Alborada Trust. JSS, LM, RG, and JGS were supported by the US National Institute of Health (JSS: NIH grant P20GM103501; LM, RG, JGS: NIH grant BAA-NIAID-DAIT-NIHQI2008031).This is the final published version. It first appeared at http://www.plosntds.org/article/info%3Adoi%2F10.1371%2Fjournal.pntd.0003398

    Correction: Lassa hemorrhagic fever in a late term pregnancy from northern Sierra Leone with a positive maternal outcome: case report

    Get PDF
    Lassa fever (LF) is a devastating viral disease prevalent in West Africa. Efforts to take on this public health crisis have been hindered by lack of infrastructure and rapid field deployable diagnosis in areas where the disease is prevalent. Recent capacity building at the Kenema Government Hospital Lassa Fever Ward (KGH LFW) in Sierra Leone has lead to a major turning point in the diagnosis, treatment and study of LF. Herein we present the first comprehensive rapid diagnosis and real time characterization of an acute hemorrhagic LF case at KGH LFW. This case report focuses on a third trimester pregnant Sierra Leonean woman from the historically non-endemic Northern district of Tonkolili who survived the illness despite fetal demise. Employed in this study were newly developed recombinant LASV Antigen Rapid Test cassettes and dipstick lateral flow immunoassays (LFI) that enabled the diagnosis of LF within twenty minutes of sample collection. Deregulation of overall homeostasis, significant hepatic and renal system involvement, and immunity profiles were extensively characterized during the course of hospitalization. Rapid diagnosis, prompt treatment with a full course of intravenous (IV) ribavirin, IV fluids management, and real time monitoring of clinical parameters resulted in a positive maternal outcome despite admission to the LFW seven days post onset of symptoms, fetal demise, and a natural still birth delivery. These studies solidify the growing rapid diagnostic, treatment, and surveillance capabilities at the KGH LF Laboratory, and the potential to significantly improve the current high mortality rate caused by LF. As a result of the growing capacity, we were also able to isolate Lassa virus (LASV) RNA from the patient and perform Sanger sequencing where we found significant genetic divergence from commonly circulating Sierra Leonean strains, showing potential for the discovery of a newly emerged LASV strain with expanded geographic distribution. Furthermore, recent emergence of LF cases in Northern Sierra Leone highlights the need for superior diagnostics to aid in the monitoring of LASV strain divergence with potentially increased geographic expansion.Organismic and Evolutionary BiologyOther Research Uni

    Mass drug administration of ivermectin, diethylcarbamazine, plus albendazole compared with diethylcarbamazine plus albendazole for reduction of lymphatic filariasis endemicity in Papua New Guinea: a cluster-randomised trial

    Get PDF
    Background: A single co-administered dose of a triple-drug regimen (ivermectin, diethylcarbamazine, and albendazole) has been shown to be safe and more efficacious for clearing Wuchereria bancrofti microfilariae than the standard two-drug regimen of diethylcarbamazine plus albendazole in clinical trials. However, the effectiveness of mass drug administration with the triple-drug regimen compared with the two-drug regimen is unknown. We compared the effectiveness of mass drug administration with the triple-drug and two-drug regimens for reducing microfilariae prevalence to less than 1% and circulating filarial antigen prevalence to less than 2%, levels that are unlikely to sustain transmission of lymphatic filariasis, in Papua New Guinea. Methods: This open-label, cluster-randomised study was done in 24 villages in a district endemic for lymphatic filariasis in Papua New Guinea. Villages paired by population size were randomly assigned to receive mass drug administration with a single dose of the triple-drug oral regimen of ivermectin (200 μg per kg of bodyweight) plus diethylcarbamazine (6 mg per kg of bodyweight) plus albendazole (400 mg) or a single dose of the two-drug oral regimen of diethylcarbamazine (6 mg per kg of bodyweight) plus albendazole (400 mg). This is a follow-on study of a previously reported safety study (ClinicalTrials.gov NCT02899936). All residents aged 5 years or older and non-pregnant women were asked to participate. After cross-sectional night blood microfilariae and circulating filarial antigen surveys, mass drug administration was provided at baseline and repeated 12 months later. The primary outcomes were mean prevalence of microfilariae and circulating filarial antigen at 12 months and 24 months, assessed in all residents willing to participate at each timepoint. This study is registered with ClinicalTrials.gov, NCT03352206. Findings: Between Nov 18, 2016, and May 26, 2017, 4563 individuals were enrolled in 24 clusters; 12 clusters (2382 participants) were assigned to the triple-drug regimen and 12 clusters (2181 participants) to the two-drug regimen. Mean drug ingestion rates (of residents aged ≥5 years) were 66·1% at baseline and 63·2% at 12 months in communities assigned to the triple-drug regimen and 65·9% at baseline and 54·9% at 12 months in communities assigned to the two-drug regimen. Microfilariae prevalence in the triple-drug regimen group decreased from 105 (4·4%) of 2382 participants (95% CI 3·6–5·3) at baseline to nine (0·4%) of 2319 (0·1–0·7) at 12 months and four (0·2%) of 2086 (0·1–0·5) at 24 months. In the two-drug regimen group, microfilariae prevalence decreased from 93 (4·3%) of 2181 participants (95% CI 3·5–5·2) at baseline to 29 (1·5%) of 1963 (1·0–2·1) at 12 months and eight (0·4%) of 1844 (0·2–0·9) at 24 months (adjusted estimated risk ratio 4·5, 95% CI 1·4–13·8, p=0·0087, at 12 months; 2·9, 95% CI 1·0–8·8, p=0·058, at 24 months). The prevalence of circulating filarial antigen decreased from 523 (22·0%) of 2382 participants (95% CI 20·3–23·6) at baseline to 378 (16·3%) of 2319 (14·9–17·9) at 12 months and 156 (7·5%) of 2086 (6·4–8·7) at 24 months in the triple-drug regimen group and from 489 (22·6%) of 2168 participants (20·7–24·2) at baseline to 358 (18·2%) of 1963 (16·7–20·1) at 12 months and 184 (10·0%) of 1840 (8·7–11·5) at 24 months in the two-drug regimen group; after adjustment, differences between groups were not significant. Interpretation: Mass administration of the triple-drug regimen was more effective than the two-drug regimen in reducing microfilariae prevalence in communities to less than the target level of 1%, but did not reduce circulating filarial antigen prevalence to less than 2%. These results support the use of mass drug administration with the triple-drug regimen to accelerate elimination of lymphatic filariasis

    Environmental-mechanistic modelling of the impact of global change on human zoonotic disease emergence: A case study of Lassa fever

    Get PDF
    1. Human infectious diseases are a significant threat to global human health and economies (e.g., Ebola, SARs), with the majority of infectious diseases having an animal source (zoonotic). Despite their importance, the lack of a quantitative predictive framework hampers our understanding of how spill-overs of zoonotic infectious diseases into the human population will be impacted by global environmental stressors. 2. Here, we create an environmental-mechanistic model for understanding the impact of global change on the probability of zoonotic disease reservoir host-human spill-over events. As a case study, we focus on Lassa fever virus (LAS). We firstly quantify the spatial determinants of LAS outbreaks, including the phylogeographic distribution of its reservoir host Natal multimammate rat (Mastomys natalensis) (LAS host). Secondly, we use these determinants to inform our environmental-mechanistic model to estimate present day LAS spill-over events and the predicted impact of climate change, human population growth, and land use by 2070. 3. We find phylogeographic evidence to suggest that LAS is confined to only one clade of LAS host (Western clade Mastomys natalensis), and that the probability of its occurrence was a major determinant of the spatial variation in LAS historical outbreaks (69.8%), along with human population density (20.4%). Our estimates for present day LAS spill-over events from our environmental-mechanistic model were consistent with observed patterns, and we predict an increase in events per year by 2070 from 195,125 to 406,725 within the LAS endemic western African region. Of the component drivers, climate change and human population growth are predicted to have the largest effects by increasing landscape suitability for the host and human-host contact rates, while land use change has only a weak impact on the number of future events. 4. LAS spill-over events did not respond uniformly to global environmental stressors, and we suggest that understanding the impact of global change on zoonotic infectious disease emergence requires an understanding of how reservoir host species respond to environmental change. Our environmental-mechanistic modelling methodology provides a novel generalizable framework to understand the impact of global change on the spill-over of zoonotic diseases
    corecore