60 research outputs found

    The Role of Mobile Genetic Elements in the Spread of Antimicrobial-Resistant Escherichia coli from Chickens to Humans in Small-Scale Production Poultry Operations in Rural Ecuador

    Get PDF
    © The Author(s) 2018. Small-scale production poultry operations are increasingly common worldwide. To investigate how these operations influence antimicrobial resistance and mobile genetic elements (MGEs), Escherichia coli isolates were sampled from small-scale production birds (raised in confined spaces with antibiotics in feed), household birds (no movement constraints; fed on scraps), and humans associated with these birds in rural Ecuador (2010-2012). Isolates were screened for genes associated with MGEs as well as phenotypic resistance to 12 antibiotics. Isolates from small-scale production birds had significantly elevated odds of resistance to 7 antibiotics and presence of MGE genes compared with household birds (adjusted odds ratio (OR) range = 2.2-87.9). Isolates from humans associated with small-scale production birds had elevated odds of carrying an integron (adjusted OR = 2.0; 95% confidence interval (CI): 1.06, 3.83) compared with humans associated with household birds, as well as resistance to sulfisoxazole (adjusted OR = 1.9; 95% CI: 1.01, 3.60) and trimethoprim/sulfamethoxazole (adjusted OR = 2.1; 95% CI: 1.13, 3.95). Stratifying by the presence of MGEs revealed antibiotic groups that are explained by biological links to MGEs; in particular, resistance to sulfisoxazole, trimethoprim/sulfamethoxazole, or tetracycline was highest among birds and humans when MGE exposures were present. Small-scale production poultry operations might select for isolates carrying MGEs, contributing to elevated levels of resistance in this setting

    EU Agro Biogas Project

    Get PDF
    EU-AGRO-BIOGAS is a European Biogas initiative to improve the yield of agricultural biogas plants in Europe, to optimise biogas technology and processes and to improve the efficiency in all parts of the production chain from feedstock to biogas utilisation. Leading European research institutions and universities are cooperating with key industry partners in order to work towards a sustainable Europe. Fourteen partners from eight European countries are involved. EU-AGRO-BIOGAS aims at the development and optimisation of the entire value chain – to range from the production of raw materials, the production and refining of biogas to the utilisation of heat and electricity

    Antibiotic Resistance in Animal and Environmental Samples Associated with Small-Scale Poultry Farming in Northwestern Ecuador

    Get PDF
    The effects of animal agriculture on the spread of antibiotic resistance (AR) are cross-cutting and thus require a multidisciplinary perspective. Here we use ecological, epidemiological, and ethnographic methods to examine populations of Escherichia coli circulating in the production poultry farming environment versus the domestic environment in rural Ecuador, where small-scale poultry production employing nontherapeutic antibiotics is increasingly common. We sampled 262 “production birds” (commercially raised broiler chickens and laying hens) and 455 “household birds” (raised for domestic use) and household and coop environmental samples from 17 villages between 2010 and 2013. We analyzed data on zones of inhibition from Kirby-Bauer tests, rather than established clinical breakpoints for AR, to distinguish between populations of organisms. We saw significantly higher levels of AR in bacteria from production versus household birds; resistance to either amoxicillin-clavulanate, cephalothin, cefotaxime, and gentamicin was found in 52.8% of production bird isolates and 16% of household ones. A strain jointly resistant to the 4 drugs was exclusive to a subset of isolates from production birds (7.6%) and coop surfaces (6.5%) and was associated with a particular purchase site. The prevalence of AR in production birds declined with bird age (P 0.01 for all antibiotics tested except tetracycline, sulfisoxazole, and trimethoprim-sulfamethoxazole). Farming status did not impact AR in domestic environments at the household or village level. Our results suggest that AR associated with small-scale poultry farming is present in the immediate production environment and likely originates from sources outside the study area. These outside sources might be a better place to target control efforts than local management practices

    Greco-2: A randomized, phase 2 study of stereotactic body radiation therapy (SBRT) in combination with rucosopasem (GC4711) in the treatment of locally advanced or borderline resectable nonmetastatic pancreatic cancer

    Get PDF
    Background: While treatment of pancreatic cancer has advanced, survival rates remain low. Stereotactic body radiotherapy (SBRT; high dose per fraction radiation) may exhibit improved clinical outcomes in locally advanced pancreatic cancer but carries potential gastrointestinal toxicity risks. Rucosopasem (GC4711) is one of a class of investigational selective dismutase mimetics that rapidly and specifically converts superoxide to hydrogen peroxide. Studies have shown that normal cells tolerate hydrogen peroxide fluxes better than cancer cells. As radiation response modifiers, dismutase mimetics have the potential to increase tumor control of SBRT without compromising radiation safety. In a pilot phase 1/2 trial in patients with pancreatic cancer, avasopasem, a dismutase mimetic related to rucosopasem, nearly doubled median overall survival in patients receiving SBRT vs placebo plus SBRT. Improvements versus placebo were also observed in local tumor control, time to metastases, and progression-free survival. Altogether, these data support the hypothesis that rucosopasem may improve survival and the benefit-risk ratio of SBRT by improving efficacy without increasing gastrointestinal toxicity. Methods: GRECO-2 is a phase 2, multicenter, randomized, double-blind, placebo-controlled study (NCT04698915) to determine the effect of adding rucosopasem to SBRT on overall survival in patients with borderline resectable or locally advanced, unresectable nonmetastatic pancreatic cancer following initial chemotherapy with a FOLFIRINOX-based regimen or a gemcitabine doublet. Approximately 160 patients will be randomized (approximately 35 sites) to receive rucosopasem 100 mg or placebo via IV infusion over 15 minutes, prior to each SBRT fraction (5 x 10 Gy). Patients judged to be resectable will undergo surgical exploration within 8 weeks after SBRT. The primary endpoint is overall survival. Secondary endpoints include progression-free survival, locoregional control, time to metastasis, surgical resection rate, RO resection rate, best overall response, in-field local response, and safety (acute and late toxicities). Exploratory endpoints include PRO-CTCAE and CA19-9 normalization

    Transendothelial migration of human umbilical mesenchymal stem cells across uterine endothelial monolayers: junctional dynamics and putative mechanisms

    Get PDF
    Introduction: During pregnancy, fetal stem cells can transfer to the maternal circulation and participate in tissue repair. How they transmigrate across maternal endothelial barriers and whether they can subsequently influence maternal endothelial integrity is not known. Methods: Mesenchymal stem cells (WJ-MSC) were isolated from Wharton's jelly and their interactions with human uterine microvascular endothelial cell (HUtMEC) monolayers, junctional occupancy and expression/phosphorylation of vascular endothelial (VE)- cadherin and vascular endothelial growth factor (VEGF-A) secretion was studied over 48h by real time, confocal microscopy, immunoblotting and ELISA. Results: WJ-MSC displayed exploratory behaviour with interrogation of paracellular openings and spreading into the resultant increased gaps followed by closing of the endothelium over the WJ-MSC. 62% of added cells crossed within 22h to sub-endothelial niches. There was a concomitant loss of junctional VE-cadherin in HUtMEC followed by a full return and increased VE-cadherin expression after 22h. During early hours, VE-cadherin showed a transient phosphorylation at Tyrosine (Tyr)-685 when VEGF-A secretion were high. From 16 to 22h, there was increased de-phosphorylation of Tyr-731. Anti-VEGF-A blocked Tyr-685 phosphorylation but not the decrease in P-Tyr731; this partially inhibited WJ-MSC transmigration. Discussion: Fetal WJ-MSC can traverse uterine endothelial monolayers by mediating a non-destructive paracellular pathway. They can promote junctional stability of uterine endothelium from the sub-endothelial niche. Mechanistically, WJ-MSC induces VEGF-dependent phosphorylation events linked with paracellular permeability and VEGF-independent de-phosphorylation events associated with leukocyte extravasation. Our data also allows consideration of a possible role of fetal MSC in mature functioning of the uterine vasculature needed for optimal utero-placental perfusion

    Corrigendum to 'A novel multiplex qPCR assay for detection of Plasmodium falciparum with histidine-rich protein 2 and 3 (pfhrp2 and pfhrp3) deletions in polyclonal infections'.

    Get PDF
    The authors wish to correct two typographical errors in the manuscript. In the Methods (Section 5.3: Assay optimization), the concentration unit of dNTPs was wrongly written as 800 nM (nanomolar) and should be corrected to 800mM (millimolar). Furthermore, in Table S1 of the Supplementary material, the primers and probe sequences for Pfhrp3 are incorrect. They should be written: Pfhrp3_F2: 5’-ACGGATTTCATTTTAACCCTTCACGA-‘3, Pfhrp3_R2: 5’-TGAGAATCATCAAAACAAGCATTAGC-‘3 and Pfhrp3_probe: JOE’-ACAATTCCCATACTTTACATCATGCA-‘3 BHQ1. A revised Table S1 is included (below). The primers and probe sequences of Pfhrp3 in Figure 3S of the supplementary material are correct. The authors regret any confusion caused and appreciate the opportunity to correct these mistakes The authors would like to apologise for any inconvenience caused

    A multiplex qPCR approach for detection of pfhrp2 and pfhrp3 gene deletions in multiple strain infections of Plasmodium falciparum

    Get PDF
    The rapid and accurate diagnosis of Plasmodium falciparum malaria infection is an essential factor in malaria control. Currently, malaria diagnosis in the field depends heavily on using rapid diagnostic tests (RDTs) many of which detect circulating parasite-derived histidine-rich protein 2 antigen (PfHRP2) in capillary blood. P. falciparum strains lacking PfHRP2, due to pfhrp2 gene deletions, are an emerging threat to malaria control programs. The novel assay described here, named qHRP2/3-del, is well suited for high-throughput screening of P. falciparum isolates to identify these gene deletions. The qHRP2/3-del assay identified pfhrp2 and pfhrp3 deletion status correctly in 93.4% of samples with parasitemia levels higher than 5 parasites/”L when compared to nested PCR. The qHRP2/3-del assay can correctly identify pfhrp2 and pfhrp3 gene deletions in multiple strain co-infections, particularly prevalent in Sub-Saharan countries. Deployment of this qHRP2/3-del assay will provide rapid insight into the prevalence and potential spread of P. falciparum isolates that escape surveillance by RDTs

    Nasal and Plasma SARS-CoV-2 RNA Levels are Associated with Timing of Symptom Resolution in the ACTIV-2 Trial of Non-hospitalized Adults with COVID-19

    Get PDF
    Acute COVID-19 symptoms limit daily activities, but little is known about its association with SARS-CoV-2 viral burden. In this exploratory analysis of placebo recipients in the ACTIV-2/A5401 platform trial, we showed that high anterior nasal (AN) RNA levels and detectable plasma RNA were associated with delayed symptom improvement

    Low Complexity of Infection Is Associated With Molecular Persistence of Plasmodium falciparum in Kenya and Tanzania

    Get PDF
    Background Plasmodium falciparum resistance to artemisinin-based combination therapies (ACTs) is a threat to malaria elimination. ACT-resistance in Asia raises concerns for emergence of resistance in Africa. While most data show high efficacy of ACT regimens in Africa, there have been reports describing declining efficacy, as measured by both clinical failure and prolonged parasite clearance times. Methods Three hundred children aged 2–10 years with uncomplicated P. falciparum infection were enrolled in Kenya and Tanzania after receiving treatment with artemether-lumefantrine. Blood samples were taken at 0, 24, 48, and 72 h, and weekly thereafter until 28 days post-treatment. Parasite and host genetics were assessed, as well as clinical, behavioral, and environmental characteristics, and host anti-malarial serologic response. Results While there was a broad range of clearance rates at both sites, 85% and 96% of Kenyan and Tanzanian samples, respectively, were qPCR-positive but microscopy-negative at 72 h post-treatment. A greater complexity of infection (COI) was negatively associated with qPCR-detectable parasitemia at 72 h (OR: 0.70, 95% CI: 0.53–0.94), and a greater baseline parasitemia was marginally associated with qPCR-detectable parasitemia (1,000 parasites/uL change, OR: 1.02, 95% CI: 1.01–1.03). Demographic, serological, and host genotyping characteristics showed no association with qPCR-detectable parasitemia at 72 h. Parasite haplotype-specific clearance slopes were grouped around the mean with no association detected between specific haplotypes and slower clearance rates. Conclusions Identifying risk factors for slow clearing P. falciparum infections, such as COI, are essential for ongoing surveillance of ACT treatment failure in Kenya, Tanzania, and more broadly in sub-Saharan Africa
    • 

    corecore