2,891 research outputs found

    Correlations in Systems of Complex Directed Macromolecules

    Full text link
    An ensemble of directed macromolecules on a lattice is considered, where the constituting molecules are chosen as a random sequence of N different types. The same type of molecules experiences a hard-core (exclusion) interaction. We study the robustness of the macromolecules with respect to breaking and substituting individual molecules, using a 1/N expansion. The properties depend strongly on the density of macromolecules. In particular, the macromolecules are robust against breaking and substituting at high densities.Comment: 9 pages, 4 figure

    Non-equilibrium Phase-Ordering with a Global Conservation Law

    Full text link
    In all dimensions, infinite-range Kawasaki spin exchange in a quenched Ising model leads to an asymptotic length-scale L(ρt)1/2t1/3L \sim (\rho t)^{1/2} \sim t^{1/3} at T=0T=0 because the kinetic coefficient is renormalized by the broken-bond density, ρL1\rho \sim L^{-1}. For T>0T>0, activated kinetics recovers the standard asymptotic growth-law, Lt1/2L \sim t^{1/2}. However, at all temperatures, infinite-range energy-transport is allowed by the spin-exchange dynamics. A better implementation of global conservation, the microcanonical Creutz algorithm, is well behaved and exhibits the standard non-conserved growth law, Lt1/2L \sim t^{1/2}, at all temperatures.Comment: 2 pages and 2 figures, uses epsf.st

    Implications of a High Angular Resolution Image of the Sunyaev-Zel'dovich Effect in RXJ1347-1145

    Full text link
    The most X-ray luminous cluster known, RXJ1347-1145 (z=0.45), has been the object of extensive study across the electromagnetic spectrum. We have imaged the Sunyaev-Zel'dovich Effect (SZE) at 90 GHz (3.3 mm) in RXJ1347-1145 at 10" resolution with the 64-pixel MUSTANG bolometer array on the Green Bank Telescope (GBT), confirming a previously reported strong, localized enhancement of the SZE 20" to the South-East of the center of X-ray emission. This enhancement of the SZE has been interpreted as shock-heated (> 20 keV) gas caused by an ongoing major (low mass-ratio) merger event. Our data support this interpretation. We also detect a pronounced asymmetry in the projected cluster pressure profile, with the pressure just east of the cluster core ~1.6 times higher than just to the west. This is the highest resolution image of the SZE made to date.Comment: 9 pages, 7 figures; accepted for publication in The Astrophysical Journa

    Precision control of thermal transport in cryogenic single-crystal silicon devices

    Get PDF
    We report on the diffusive-ballistic thermal conductance of multi-moded single-crystal silicon beams measured below 1 K. It is shown that the phonon mean-free-path \ell is a strong function of the surface roughness characteristics of the beams. This effect is enhanced in diffuse beams with lengths much larger than \ell, even when the surface is fairly smooth, 5-10 nm rms, and the peak thermal wavelength is 0.6 μ\mum. Resonant phonon scattering has been observed in beams with a pitted surface morphology and characteristic pit depth of 30 nm. Hence, if the surface roughness is not adequately controlled, the thermal conductance can vary significantly for diffuse beams fabricated across a wafer. In contrast, when the beam length is of order \ell, the conductance is dominated by ballistic transport and is effectively set by the beam area. We have demonstrated a uniformity of ±\pm8% in fractional deviation for ballistic beams, and this deviation is largely set by the thermal conductance of diffuse beams that support the micro-electro-mechanical device and electrical leads. In addition, we have found no evidence for excess specific heat in single-crystal silicon membranes. This allows for the precise control of the device heat capacity with normal metal films. We discuss the results in the context of the design and fabrication of large-format arrays of far-infrared and millimeter wavelength cryogenic detectors

    Observations of M87 and Hydra A at 90 GHz

    Full text link
    This paper presents new observations of the AGNs M87 and Hydra A at 90 GHz made with the MUSTANG bolometer array on the Green Bank Telescope at 8.5" resolution. A spectral analysis is performed combining this new data and archival VLA data on these objects at longer wavelengths. This analysis can detect variations in spectral index and curvature expected from energy losses in the radiating particles. M87 shows only weak evidence for steepening of the spectrum along the jet suggesting either re-acceleration of the relativistic particles in the jet or insufficient losses to affect the spectrum at 90 GHz. The jets in Hydra A show strong steepening as they move from the nucleus suggesting unbalanced losses of the higher energy relativistic particles. The difference between these two sources may be accounted for by the different lengths over which the jets are observable, 2 kpc for M87 and 45 kpc for Hydra A.Comment: 11 pages, submitted to Ap

    Differential geometry, Palatini gravity and reduction

    Get PDF
    The present article deals with a formulation of the so called (vacuum) Palatini gravity as a general variational principle. In order to accomplish this goal, some geometrical tools related to the geometry of the bundle of connections of the frame bundle LMLM are used. A generalization of Lagrange-Poincar\'e reduction scheme to these types of variational problems allows us to relate it with the Einstein-Hilbert variational problem. Relations with some other variational problems for gravity found in the literature are discussed.Comment: 28 pages, no figures. (v3) Remarks, discussion and references adde

    MUSTANG: 90 GHz Science with the Green Bank Telescope

    Full text link
    MUSTANG is a 90 GHz bolometer camera built for use as a facility instrument on the 100 m Robert C. Byrd Green Bank radio telescope (GBT). MUSTANG has an 8 by 8 focal plane array of transition edge sensor bolometers read out using time-domain multiplexed SQUID electronics. As a continuum instrument on a large single dish MUSTANG has a combination of high resolution (8") and good sensitivity to extended emission which make it very competitive for a wide range of galactic and extragalactic science. Commissioning finished in January 2008 and some of the first science data have been collected.Comment: 9 Pages, 5 figures, Presented at the SPIE conference on astronomical instrumentation in 200

    Detecting Population III stars through observations of near-IR cosmic infrared background anisotropies

    Full text link
    Following the successful mapping of the last scattering surface by WMAP and balloon experiments, the epoch of the first stars, when Population III stars formed, is emerging as the next cosmological frontier. It is not clear what these stars' properties were, when they formed or how long their era lasted before leading to the stars and galaxies we see today. We show that these questions can be answered with the current and future measurements of the near-IR cosmic infrared background (CIB). Theoretical arguments suggest that Population III stars were very massive and short-lived stars that formed at z1020z\sim 10-20 at rare peaks of the density field in the cold-dark-matter Universe. Because Population III stars probably formed individually in small mini-halos, they are not directly accessible to current telescopic studies. We show that these stars left a strong and measurable signature via their contribution to the CIB anisotropies for a wide range of their formation scenarios. The excess in the recently measured near-IR CIB anisotropies over that from normal galaxies can be explained by contribution from early Population III stars. These results imply that Population III were indeed very massive stars and their epoch started at z20z\sim 20 and lasted past z\lsim 13. We show the importance of accurately measuring the CIB anisotropies produced by Population III with future space-based missions.Comment: Ap.J., in press. (Replaced with accepted version

    A high-affinity interaction with ADP-actin monomers underlies the mechanism and in vivo function of Srv2/cyclase-associated protein

    Get PDF
    Cyclase-associated protein (CAP), also called Srv2 in Saccharomyces cerevisiae, is a conserved actin monomer-binding protein that promotes cofilin-dependent actin turnover in vitro and in vivo. However, little is known about the mechanism underlying this function. Here, we show that S. cerevisiae CAP binds with strong preference to ADP-G-actin (K-d 0.02 muM) compared with ATP-G-actin (K-d 1.9 muM) and competes directly with cofilin for binding ADP-G-actin. Further, CAP blocks actin monomer addition specifically to barbed ends of filaments, in contrast to profilin, which blocks monomer addition to pointed ends of filaments. The actin-binding domain of CAP is more extensive than previously suggested and includes a recently solved beta-sheet structure in the C-terminus of CAP and adjacent sequences. Using site-directed mutagenesis, we define evolutionarily conserved residues that mediate binding to ADP-G-actin and demonstrate that these activities are required for CAP function in vivo in directing actin organization and polarized cell growth. Together, our data suggest that in vivo CAP competes with cofilin for binding ADP-actin monomers, allows rapid nucleotide exchange to occur on actin, and then because of its 100-fold weaker binding affinity for ATP-actin compared with ADP-actin, allows other cellular factors such as profilin to take the handoff of ATP-actin and facilitate barbed end assembly
    corecore