927 research outputs found
Constraining Primordial Magnetic Fields with Future Cosmic Shear Surveys
The origin of astrophysical magnetic fields observed in galaxies and clusters
of galaxies is still unclear. One possibility is that primordial magnetic
fields generated in the early Universe provide seeds that grow through
compression and turbulence during structure formation. A cosmological magnetic
field present prior to recombination would produce substantial matter
clustering at intermediate/small scales, on top of the standard inflationary
power spectrum. In this work we study the effect of this alteration on one
particular cosmological observable, cosmic shear. We adopt the semi-analytic
halo model in order to describe the non-linear clustering of matter, and feed
it with the altered mass variance induced by primordial magnetic fields. We
find that the convergence power spectrum is, as expected, substantially
enhanced at intermediate/small angular scales, with the exact amplitude of the
enhancement depending on the magnitude and power-law index of the magnetic
field power spectrum. We use the predicted statistical errors for a future
wide-field cosmic shear survey, on the model of the ESA Cosmic Vision mission
\emph{Euclid}, in order to forecast constraints on the amplitude of primordial
magnetic fields as a function of the spectral index. We find that the amplitude
will be constrained at the level of nG for , and at the
level of nG for . The latter is at the same level of
lower bounds coming from the secondary emission of gamma-ray sources, implying
that for high spectral indices \emph{Euclid} will certainly be able to detect
primordial magnetic fields, if they exist. The present study shows how
large-scale structure surveys can be used for both understanding the origins of
astrophysical magnetic fields and shedding new light on the physics of the
pre-recombination Universe. (abridged)Comment: 24 pages, 9 figures. To appear on JCA
Primordial density perturbations with running spectral index: impact on non-linear cosmic structures
(abridged) We explore the statistical properties of non-linear cosmic
structures in a flat CDM cosmology in which the index of the
primordial power spectrum for scalar perturbations is allowed to depend on the
scale. Within the inflationary paradigm, the running of the scalar spectral
index can be related to the properties of the inflaton potential, and it is
hence of critical importance to test it with all kinds of observations, which
cover the linear and non-linear regime of gravitational instability. We focus
on the amount of running allowed by an updated
combination of CMB anisotropy data and the 2dF Galaxy Redshift Survey. Our
analysis constrains
at 95% Confidence Level when (not) taking into
account primordial gravitational waves in a ratio as predicted by canonical
single field inflation, in agreement with other works. For the cosmological
models best fitting the data both with and without running we studied the
abundance of galaxy clusters and of rare objects, the halo bias, the
concentration of dark matter halos, the Baryon Acoustic Oscillation, the power
spectrum of cosmic shear, and the Integrated Sachs-Wolfe effect. We find that
counting galaxy clusters in future X-ray and Sunyaev-Zel'dovich surveys could
discriminate between the two models, more so if broad redshift information
about the cluster samples will be available. Likewise, measurements of the
power spectrum of cosmological weak lensing as performed by planned all-sky
optical surveys such as EUCLID could detect a running of the primordial
spectral index, provided the uncertainties about the source redshift
distribution and the underlying matter power spectrum are well under control.Comment: 17 pages, 14 figures, 4 tables. Accepted for publication on MNRA
Imprints of primordial non-Gaussianity on the number counts of cosmic shear peaks
We studied the effect of primordial non-Gaussianity with varied bispectrum
shapes on the number counts of signal-to-noise peaks in wide field cosmic shear
maps. The two cosmological contributions to this particular weak lensing
statistic, namely the chance projection of Large Scale Structure and the
occurrence of real, cluster-sized dark matter halos, have been modeled
semi-analytically, thus allowing to easily introduce the effect of non-Gaussian
initial conditions. We performed a Fisher matrix analysis by taking into
account the full covariance of the peak counts in order to forecast the joint
constraints on the level of primordial non-Gaussianity and the amplitude of the
matter power spectrum that are expected by future wide field imaging surveys.
We find that positive-skewed non-Gaussianity increases the number counts of
cosmic shear peaks, more so at high signal-to-noise values, where the signal is
mostly dominated by massive clusters as expected. The increment is at the level
of ~1 for f_NL=10 and ~10 for f_NL=100 for a local shape of the primordial
bispectrum, while different bispectrum shapes give generically a smaller
effect. For a future survey on the model of the proposed ESA space mission
Euclid and by avoiding the strong assumption of being capable to distinguish
the weak lensing signal of galaxy clusters from chance projection of Large
Scale Structures we forecasted a 1-sigma error on the level of non-Gaussianity
of ~30-40 for the local and equilateral models, and of ~100-200 for the less
explored enfolded and orthogonal bispectrum shapes.Comment: 13 pages, 8 figures, 1 table. Submitted to MNRA
The effect of primordial non-Gaussianity on the skeleton of cosmic shear maps
(abridged) We explore the imprints of deviations from Gaussian primordial
density fluctuations on the skeleton of the large-scale matter distribution as
mapped through cosmological weak lensing. We computed the skeleton length of
simulated effective convergence maps covering sq. deg each, extracted
from a suite of cosmological body runs with different levels of local
primordial non-Gaussianity. The latter is expected to alter the structure
formation process with respect to the fiducial Gaussian scenario, and thus to
leave a signature on the cosmic web. We found that alterations of the initial
conditions consistently modify both the cumulative and the differential
skeleton length, although the effect is generically smaller than the cosmic
variance and depends on the smoothing of the map prior to the skeleton
computation. Nevertheless, the qualitative shape of these deviations is rather
similar to their primordial counterparts, implying that skeleton statistics
retain good memory of the initial conditions. We performed a statistical
analysis in order to find out at what Confidence Level primordial
non-Gaussianity could be constrained by the skeleton test on cosmic shear maps
of the size we adopted. At 68.3% Confidence Level we found an error on the
measured level of primordial non-Gaussianity of ,
while at 90% Confidence Level it is of . While
these values by themselves are not competitive with the current constraints,
weak lensing maps larger than those used here would have a smaller
field-to-field variance, and thus would likely lead to tighter constraints. A
rough estimate indicates a few tens at 68.3%
Confidence Level for an all-sky weak lensing survey.Comment: 11 pages, 9 figures. Accepted for publication on MNRA
The Cluster Distribution as a Test of Dark Matter Models. IV: Topology and Geometry
We study the geometry and topology of the large-scale structure traced by
galaxy clusters in numerical simulations of a box of side 320 Mpc, and
compare them with available data on real clusters. The simulations we use are
generated by the Zel'dovich approximation, using the same methods as we have
used in the first three papers in this series. We consider the following models
to see if there are measurable differences in the topology and geometry of the
superclustering they produce: (i) the standard CDM model (SCDM); (ii) a CDM
model with (OCDM); (iii) a CDM model with a `tilted' power
spectrum having (TCDM); (iv) a CDM model with a very low Hubble
constant, (LOWH); (v) a model with mixed CDM and HDM (CHDM); (vi) a
flat low-density CDM model with and a non-zero cosmological
term (CDM). We analyse these models using a variety of
statistical tests based on the analysis of: (i) the Euler-Poincar\'{e}
characteristic; (ii) percolation properties; (iii) the Minimal Spanning Tree
construction. Taking all these tests together we find that the best fitting
model is CDM and, indeed, the others do not appear to be consistent
with the data. Our results demonstrate that despite their biased and extremely
sparse sampling of the cosmological density field, it is possible to use
clusters to probe subtle statistical diagnostics of models which go far beyond
the low-order correlation functions usually applied to study superclustering.Comment: 17 pages, 7 postscript figures, uses mn.sty, MNRAS in pres
On a novel approach using massive clusters at high redshifts as cosmological probe
In this work we propose a novel method for testing the validity of the
fiducial LCDM cosmology by measuring the cumulative distribution function of
the most massive haloes in a sample of subvolumes of identical size tiled on
the sky at a fixed redshift. The fact that the most massive clusters probe the
high-mass tail of the mass function, where the difference between LCDM and
alternative cosmological models is strongest, makes our method particularly
interesting as a cosmological probe. We utilise general extreme value
statistics (GEV) to obtain a cumulative distribution function of the most
massive objects in a given volume. We sample this distribution function
according to the number of patches covered by the survey area for a range of
different "test cosmologies" and for differently accurate mass estimations of
the haloes. By fitting this sample with the GEV distribution function, we can
study which parameters are the most sensitive with respect to the test
cosmologies. We find that the peak of the probability distribution function of
the most massive halo is well suited to test the validity of the fiducial LCDM
model, once we are able to establish a sufficiently complete large-area survey
with M_lim=10^14.5 M_sun/h (M_lim=10^14 M_sun/h) at redshifts above z=1
(z=1.5). Being of cumulative nature the proposed measure is robust and an
accuracy of 20-30% in the cluster masses would be sufficient to test for
alternative models. Since one only needs the most massive system in each
angular patch, this method would be ideally suited as a first fast consistency
check before going into a more complex statistical analysis of the observed
halo sample.Comment: 11 pages, 13 figures, 1 Table, MNRAS accepted versio
Observing the clustering properties of galaxy clusters in dynamical dark-energy cosmologies
We study the clustering properties of galaxy clusters expected to be observed
by various forthcoming surveys both in the X-ray and sub-mm regimes by the
thermal Sunyaev-Zel'dovich effect. Several different background cosmological
models are assumed, including the concordance CDM and various
cosmologies with dynamical evolution of the dark energy. Particular attention
is paid to models with a significant contribution of dark energy at early times
which affects the process of structure formation. Past light cone and selection
effects in cluster catalogs are carefully modeled by realistic scaling
relations between cluster mass and observables and by properly taking into
account the selection functions of the different instruments. The results show
that early dark-energy models are expected to produce significantly lower
values of effective bias and both spatial and angular correlation amplitudes
with respect to the standard CDM model. Among the cluster catalogues
studied in this work, it turns out that those based on \emph{eRosita},
\emph{Planck}, and South Pole Telescope observations are the most promising for
distinguishing between various dark-energy models.Comment: 16 pages, 10 figures. A&A in pres
A fast method for computing strong-lensing cross sections: Application to merging clusters
Strong gravitational lensing by irregular mass distributions, such as galaxy
clusters, is generally not well quantified by cross sections of analytic mass
models. Computationally expensive ray-tracing methods have so far been
necessary for accurate cross-section calculations. We describe a fast,
semi-analytic method here which is based on surface integrals over
high-magnification regions in the lens plane and demonstrate that it yields
reliable cross sections even for complex, asymmetric mass distributions. The
method is faster than ray-tracing simulations by factors of and thus
suitable for large cosmological simulations, saving large amounts of computing
time. We apply this method to a sample of galaxy cluster-sized dark matter
haloes with simulated merger trees and show that cluster mergers approximately
double the strong-lensing optical depth for lens redshifts
and sources near . We believe that
this result hints at one possibility for understanding the recently detected
high arcs abundance in clusters at moderate and high redshifts, and is thus
worth further studies.Comment: 12 pages, 18 figures, accepted for publication on Astronomy and
Astrophysics. Added the subsection "Source Properties" and 3 figure
The abundance of high-redshift objects as a probe of non-Gaussian initial conditions
The observed abundance of high-redshift galaxies and clusters contains
precious information about the properties of the initial perturbations. We
present a method to compute analytically the number density of objects as a
function of mass and redshift for a range of physically motivated non-Gaussian
models. In these models the non-Gaussianity can be dialed from zero and is
assumed to be small. We compute the probability density function for the
smoothed dark matter density field and we extend the Press and Schechter
approach to mildly non-Gaussian density fields. The abundance of high-redshift
objects can be directly related to the non-Gaussianity parameter and thus to
the physical processes that generated deviations from the Gaussian behaviour.
Even a skewness parameter of order 0.1 implies a dramatic change in the
predicted abundance of z\gap 1 objects. Observations from NGST and X-ray
satellites (XMM) can be used to accurately measure the amount of
non-Gaussianity in the primordial density field.Comment: Minor changes to match the accepted ApJ version (ApJ, 539
- …